ADAOS0928

. (/2 7

NRL Report 8036

An Unstable Arch Model of a Solar Flare

DANIEL S. SPICER

E. O. Hulburt Center for Spuce Research

August 10, 1976

NAVAL RESEARCH LABORATORY
. Washingtes, D.C.

Approved for public release; distribution ualimited.




DISCLAIMER NOTICE

Z @
ot

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.



SECURITY CLASSIFICATION OF TMiS PAGE rWhen Data Entered)

REPORT DOCUMENTATION PAGE BEF o o b ING o RM

2. GOVY ACCESSION NO LA RECIPIENT'S CATALOG NUMBER

L SonyA 36 - 7)

a continuing

4 TITLE rend Subtitle) N -~
lntenm reth-J

AN UNSTABLE ARCH MODEL OF A SOLAR FLARE + 1

PERIOO COVERED

P 6 PERFORMING ORG. REPORT NUMBER
doye 8 CONTRACT OR GRANT NUMBER(S)

Daniel S. ﬁpicer 6}214,

9 PERFORMING ORGANIZAYION NAME AND ADDRESS to. Plgsn.AxOE“LKESSFTTN?LOBJECT TASK
Naval Research Laboratory e

Washington, D.C. 20546 NR.L Problem A01-24.601 .

-, Project DPR€%60404-6 ., - “*T

t1 CONTROLLING OFFICE NAME AND ADORESS //

National Aeronautics and Space Administration 1 Augqgi, W76

Washington, D.C. 20546 NUMBER OF PAGES

. 142

T4 MONITORING AGENCY NAME & ADQRESS(!! different from Controlling Office) 1S. SECURITY CL ASS, (of this report)

Unclassified

1//..1

16 DiISTRIBUTION STATEMENT (of this Report}

tSa. chCLASSI FICATION DOWNGRADING
HE

e WRL—AB - -2H]

Approved for public release; distribution unlimited

17. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

t8 SUPPLEMENTARY NOTES

19 XEZY WORDS Continue on reverse eide il necassary and tdentity by block number)

Solar flares
Tearring mode
Nonlinear resonant overlap

20 A‘&TQACY (Continue on reverse aide If necesaary and IJentily by Block numtsr)

The theoretical consequences of assuming that a current flows along flaring arches consistent
with a twist in the field lines of these arches are examined. It is found that a sequence of magneto-

to as the toroidal current) can naturally explain most manifestations of a solar flare.

"~ >The principal flare instability in the proposed model is the resistive kink (or tearing :node in
arch geometry) which plays the role of thermalizing some of the field energy in the arch. and

hydrodynamic (MHD) and resistive MHD instabilities driven by the assumed current (which m
e

DD ,"5n", 1473 toitiown oF 1 nov #s 13 oBsOL ETE

S/N 0102- .68

SECURITY CLASSIFICATION OF THIS PAGE ('hln Deata Bnteveu)

251 759

AR

AN

sk,

P

7 TE
g

eliar




o Ve -t -

Lo LRITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. (Continued)

generating X-configured neutral points needed for particle acceleration. The difference between
thermal and nonthermal flares is elucidated and explained, in part, by amplitude-dependent
instabilities, generally referred to as overlapping resonances. Wo-show-thdb the criteria for the genera-
tion of flare shocks strongly depend on the magnitude and gradient steepné of the toroidal current,
which also are found to determine the volume and rate of energy release. The resulting mode! is in
excellent agreement with present observations and has successfully predicted several flare
phenomena.

ii
SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

.,

BB AR B VOB 5250 St i M g 2



r’ T - .
[ - -

CONTENTS

1. INTRODUCTION . ... .t iiiiiaiiennann
2. RECENT FLARE OBSERVATIONAL RESULTS .......
3. MHD STABILITY THEORY OF A DIFFUSE PINCH.. ...

31 Introduction ............ it iiiiineernnnennn
3.2 The Energy Principle and the Diffuse Pinch.........
3.3 Suydam’sCondition ..........................
3.4 Shear Stabilization .............. ... ... ... ...
3.5 TheKinkInstability................c..c..u ...
3.6 The Role of Resistivity and Curvature . ............
3.7 Nonlinear Studies of Kink Modes. .. ..............

S 4. RESISTIVE INSTABILITIES IN A DIFFUSE PINCH. ....

41 Introduction .......... ... i,
; 4.2 Resistive Instabilities in Planar Geometry...........
4.3 Resistive Instabilities in Cylindrical Geometry.......
4.4 An Example of MHD and Resistive Instabilities in
Cylindrical Geometry .................. ...
45 MagneticIslands ............... ... iiiinn.
46 Quasi-Modes. ..............ciiiiiiiiiannnnn.
4.7 The Rippling Mode and the Superheating Instability .

5. INSTABILITIES IN MORE COMPLEX MAGNETIC
TOPOLOGIES ....... ...t iiiienen,

51 Introduction ............ ... ... . it

5.2 An Example of Three Dimensional Magnetic
Configurations . . ...........c. e iiirnnnn

5.3 Nonlinear Resonant Phenomena .................

6. BASICFLAREMECHANISM............. .. .0oat.

6.1 Introduction ............ ... . iiiiiiiinnn,
6.2 Location of Archesthat Flare ...................
6.3 Mechanisms for Magnetic Energy Conversion .......
6.4 VolumeofEnergy Release......................
6.6 Anomalous Resistivity and the Energy Release Rate .




4

7. THE FORMATION OF IMPULSIVE ELECTROMAGNETIC

BURSTSANDSHOCKS .............cciinnn.. 81
71 Introduction .............ciii e ennnn. 81
7.2 Thermal or Nonthermal Flares .................. 82
7.3 Mechanisms that can form IEBs and Shocks ........ 83
7.4 Other Modulation Mechanisms .................. 87
8. FLAREMODELPRECURSORS..................... 20
81 Introduction ............vvrtineinrennennnns 920
8.2 Mechanisms for DrivingCurrents . . ............... 91

8.3 Parametric Excitation of MHD Kink and Resistive
KinkModes ..............ciiiviiinnnn, a5
8.4 Alteration of the Current Density Profile in the Arch . 96
8.5 Site of Initial CurrentBuildup ................... 100
8.6 Location of Initial Instability inthe Arch .......... 102

9. PHENOMENOLOGICAL ASPECTS OF THE FLARE
MODEL ......iiiit ittt eitnineiareaenns 102
91 Introduction ..............ovirivrinenunnnnn. 102
9.2 Some Speculations on the Role of Instabilities in

OtherSolarPhenomena . .. ................. 102
9.3 Expected Observational Characteristics of the Model . 103
9.4 Blast Waves and TheirEffects ................... 105
9.5 Svestka’sProblems ................c.c0iunnn... 111
10. DISCUSSION ANDCONCLUSIONS ................. 115

APPENDIX A — Location of Least Hydromagnetic Stability ... 117

APPENDIX B — Transport Mechanisms ................... 120

APPENDIX C — Resistive Kink Linear Growth Rates ......... 130

REFERENCES .......ciii ittt it titinnnennnnns 133

ACKNOWLEDGMENTS .......iiitiiertnrrcnnnennenns 138
iv

T T



_‘.F

AN UNSTABLE ARCH MODEL OF A SOLAR FLARE

1. INTRODUCTION

The solar flare, probably the most dramatic event in the solar atmosphere, has long
been an enigma to the observer observing it and to the theorist trying to explain it. The
principal reason for this lack of progress is simply that the flare theorist has tended to
concentrate on mechanisms that can convert stored energy, such as magnetic energy, into
the energy of the solar flare, instead of dealing with a specific model with its attendant
detailed field geometry. In his quest for such mechanisms the theorist has often shown
little regard for the observations, and a specific flare model has never really been eludi-
cated, with the possible exception of Sturrock’s (1966, 1968, 1972, 1974). However
recently (Vaiana and Gioconni, 1968; Widing and Purcell, 1969; Widing, 1973; Spicer
et al.,, 1974; Widing and Cheng, 1975; Winding, 1974; Widing and Cheng, 1975) the data
have shown with little doubt that the principal magnetic topology of a flare is that of an
arch and not that of a current sheet as, e.g., is assumed by Sturrock and is currently in
the theoretical vogue. Hence it is the purpose of this report to deal with the observed
flare geometry and to show that all the theoretical ideas developed in sheet models have
not gone to nought but can, in general, be reapplied in an arch geometry or that of a
prominence with some rather pleasing results.

For a flare model to be reasonably complete it should be able to describe the basic
sequence of events that leads to a flare, its evolution, and finally its secondary effects.
Further we should accept the premise that for a model to be useful it must not only
explain what is known but should also predict new effects and thus be capable of develop-
ment. In the model to be presented here we cannot accurately calculate the energy dis-
tribution of the accelerated particles, nor can we explain rigorously the origin of the cur-
rents necessary to explain the flare within the context of the flare model. However we
can explain most of the well-established observations and make some new predictions.
Phenomena that require a detailed theoretical prediction are not discussed at this stage,
simply because observations of the relevant parameters necessary for accurate calculation
do not have sufficient spatial or temporal resolution to make any detailed treatment
meaningful. As new detailed observations, e.g., the temperature and density structure of
an arch become available, we should then be able to make more accurate predictions; e.g.,
one could develop an overall computer code for the model which could evolve in sophisti-
cation as more detailed input becomes available.

This report is organized as follows: First, in Section 2, we briefly review the recently
obtained Skylab data while commenting on how these data affect older flare models. The
principal observation is that the magnetic topology of the flare volume is that of an arch,
and the principal assumption we will make is that within the arch there exists a current
which may have a complicated structure, e.g., currents and return currents. In addition,
since we have found it necessary for the arch to contain a current, we are forced to state
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criteria for stability of that arch. This comes about because we need to know what pre-
cursor effects can trigger the flare mechanism to be discussed, and because we would like
to determine the location of the flare in the solar atmosphere, which can be obtained
from a combination of stability arguments and flare energy requirements. Further, since
we must elucidate the role, e.g., of resistivity, arch curvature, and current perturbations
when discussing arch stability, we have included in Sections 3 and 4 a reasonably detailed
and self-contained discussion of MHD and resistive MHD modes that can occur in an
arch, most of which has not been discussed in the astrophysical literature.

Since the instability found to play the most important role in our model is the
“resistive kink instability,” i.e., the tearing mode in arch geometry, we discuss in Section
5 the many effects that this instability can lead to in its role as a symmetry-breaking
instability. In particular we point out that the nonlinear resonances generated by the
tearing mode can result in the phenomenon of overlapping resonances, which results in
the magnetic field lines acting stochastically around the separatrices of the magnetic islands
generated during the tearing mode. It is pointed out that this stochastic field line
behavior can greatly enhance the reconnection rate and thus the rate of energy conversion.

In Sections 6, 7, and 8 we develop the flare model. In Section 7 we discuss the
location of the arch in the solar atmosphere which is necessary to explain the observations.
We then proceed to discuss the various types of flares which we expect can be accom-
modated within the model, e.g., impulsive or those with a gradual rise and fall. We then
show that the resistivity need not be anomalous to explain the flares observed by Skylab,
although if the resistivity were to become anomalous, the required volume of energy
release would be very small, < 1020 ¢m3. Further, a discussion of mechanisms that can
form impulsive electromagnetic bursts and shocks is given in Section 7. Also, mechanisms
for particle escape from the arch are pointed out. It is then noted that the model pre-
dicts all flares should be impulsive in part, the difference then between thermal and non-
thermal flares being only an experimental sensitivity problem. Possible mechanisms that
can trigger the resistive kink mode are then discussed under precursors. Here more
intense coronal heating by waves and shock waves from other flares are found to act as
possible flare precursors.

We conclude, in Sections 9 and 10, with a discussion of the expected flare pheno-
menology. It is found that many of the classical flare effects can have surprisingly trivial
explanations within the context of the model. We also note that if a prominence or fila-
ment were carrying a current, it should also be subject to the sequence of instabilities
found for the arches. A number of predictions conceming preflare behavior and arch
behavior during the flare are made. In addition we note that any arch which carries a
current should be subject to the sequences of instabilities discussed and that this point can
explain the postflare loop phenomenon, x-ray bright points, and the slow rise and fall
events recently reported (Sheeley, et al., 1976). We then conclude by answering a num-
ber of questions put forward by Svestka (1975) which a successful flare model should
reasonably explain.

Before proceeding, we note that probably the most appealing aspect of this model is
its simplicity. That is, the model requires only a current-carrying arch or similar structure,
which, as Skylab has aptly proved, is the dominant magnetic structure within an active
region. Thus it is hoped that whether the model presented here is correct or incorrect, it
will serve to point out that current sheet models, the vogue for nearly 20 years, are not
the only answer.

2




PN

NRL REPORT 8036

2. RECENT FLARE OBSERVATIONAL RESULTS

Probably the most significant observational result for flares of the last decade has
been the determination of the magnetic topology of the flare. With this knowledge one
can radically narrow the number of possible mechanisms that can occur in the topology
once the topology is determined. Skylab ATM observers have reported (Widing, 1974a, b;
Widing and Cheng, 1975; Cheng and Widing, 1975; Spicer et al., 1974; Petrosso et al.,
1975; Vorpahl et al., 1975; Gibson, 1976; Kahler et al., 1975; Brueckner, 1975) that the
basic magnetic configuration of the solar flare is that of an arch. Figure 1 illustrates the
basic conclusions concerning the geometric structure of the flare plasma. One should
note:

® The primary flare ingredient appears to be an archlike structure;

® A localized hot plasma cloud (= 20 X 10® K and > 10! particles/cm3) exists
near or at the apex of the arch during the early flash phase, which cloud is elongated
along the arch;

® The flare kernels have their origins at the ends (feet) of the arch, and these kemels
are located in the double ribbons of the flare;

® The arch is oblique to the neutral line (the line along which the measured com-
ponent of B normal to the solar surface vanishes) and each flare ribbon lies on each side
of the neutral line;

- 22x107 K PLASMA CLOUD

7FLARE KERNEL (25 x108°K)

LIMB VIEW
(EARLY PHASE)

KERNELS (25 x108 K)

/
//<<<'“\ DISC VIEW
\‘__,»’ (EARLY PHASE)

22 x107 K PLASMA CLOUD

DISC VIEW
v (GRADUAL PHASE)

"ARCH APPEARS IN 28x10%*K LINES

Fig. 1 — Observed flare geometry
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® As the plasma cools, the arch becomes very apparent in the cooler lines (= 2 X 108 K);
® The feet of arch clearly originate in bipolar regions and connect differing polarities;

@ The small volume of the hot plasma core is indicative of well-localized heating, and
the energy appears to be released in situ in this core;

® The arch exhibits great stability during most of the flare, while at lower altitudes
mass motions are observed;

® Many of the observed flares appear to be thermal flares and show little dynamic
behavior;

® Evidence has been found that the flare may undergo repeated heatings, occwrring at
different locations in the arch or in differing arches;

® Evidence shows that neighboring arches may flare due to shock disturbances
generated by the initial flare;

® Recent evidence suggests that sonie arches kink, but it is not clear whether all the
kinking arches are the flare arches or higher lying arches;

® The rise time, decay time, and rate of increase of soft-x-ray emission tends to in-
crease with flare volume;

® The volume of in situ intense heating was of about 2 cubic arcseconds, correspond-
ing to volume scales of 14002 km3.

Preflare observations (Petrasso et al., 1975; Brueckner, 1975; Gibson, 1976; Patterson
et al., 1976) have found:

@ The arches are observed to brighten, sometimes gradually (hours) and sometimes
quickly (about 10 minutes), prior to flaring;

® Line spectra from the transition zone show that the transition zone is undergoing
strong agitation;

® Subflares appear as arches and show strong agitation in transition zone lines;
® The arches are observed to exist prior to flaring.

These observations are in complete contradiction to all existing flare models except
possibly the ‘‘current interruption model’’ (Alfven and Carlquist, 1967). This model how-
ever has been criticized theoretically (Smith and Priest, 1972). Although all the criticisms
made are not correct (Spicer, 1974), interruption of the bulk current in an arch, by
anomalous processes or otherwise, is highly unlikely (a detailed discussion will be published
elsewhere). With these results and their cbvious inconsistency with present flare theories,
there is strong motivation to look elsewhere for an explanation of a flare.
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Fig. 2 — "“One-component” solar x-ray burst observed by the OGO-5 detector on
June 20, 1968. The 2.3-sec averages of the counting rates of the eight x-ray energy
channels are plotted against time. The counting rate of the 9.6-19.2-keV channel
near the maximum of the burst was close to the saturation level and is therefore not
shown,

Recently Svestka (1974) has emphasized the apparent difference between the ther-
mal and nonthermal flare. The principal difference appears to lie in the fact that a ther-
mal flare generates a longer lived electromagnetic burst whereas the nonthermal flare also
has impulsive electromagnetic bursts associated with it. This difference is clearly illustrated
in Figs. 2 and 3. Svestka further argues that the thermal flare can be explained without
recourse to acceleration mechanisms, whereas the nonthermal flare clearly needs impul-
sively accelerated particles. In general a nonthermal flare acts like a thermal flare but
with additional impulsive hard-x-ray, microwave, XUV, and type III radio bursts.

Svestka makes some other interesting points concerning type 11, type 1V, and type III
bursts. He notes that a majority of flares occur without type 1II bursts whereas x-ray
and microwave bursts are always associated with flares. Further one finds that very rarely
do type III, x-ray, and microwave bursts occur simultaneously, but when they do, the
type Il bursts are intense. These observations are interesting, since the principal argu-
ment in favor of sheet flare models is that they permit the easy escape of relativistic
electrons to form the type Il burst during the flare, but here we have a direct contradic-
tion to that argument. Most flares do not produce type III bursts. Svestka further notes




DANIEL 8. SPICER

BEASSRARAEARREARRRANERR RRRRASANRESRRRRN RRRE RN
9400.3750 MHz  yicrowave BURST
SIMPLE TOYOKAWA
. 1 ':‘:‘:25'. SOLAR FLARE
Y SOLAR X-RAYS :
. E 060-5
10 26 JUNE 1968
s 23 SEC. AVERAGES
g ° ’ b 96-192
" N -1 Kev
8 102 W/ / " “/\'Mw-w (RATE x | 0)
ul WA A g et hddeetarageryy  [92-32 Kev
n 10 iy lM ) (RATE = 10}
W i ‘MIWN Wiwpene  32-48 K
x WM”‘\ ! e {RATE £ 0.2)
o WMMMM 48-64 Kev
10" ! ! "I l W ." !l“” Pl e oon
n
E o2
% 10 64-80 KeV
o (RATE x10°3)
o

80-104 Kev
(RATE 5 107%)

103 n W )
104 “ 'H W
mw s X

MWWMMW“ > 128 Kev

(RATE x10°7)

106

Lo b bena ey bt bbb by
045% 0439 0503 0307 O5i 0%1% 0519 0823 0%27 053 053% 0539 (UT)

26 JUNE 1968

Fig. 3 — “Two-component” solar x-ray burst observed on June 26, 1968. Notice the
sharp spike at 0511:44 U.T., nearly coincident with the peak in the microwave radio
burst.

that type IV bursts are observed (with the impulsive x-ray and microwave bursts which
usually form the subsequent type IV burst) in essentially all events when protons of high
energies and relativistic electrons are recorded.

Associated with these effects are the type II bursts, which are a result of shock
waves propagating through the corona at speeds of about 1500 km/s. These type II
bursts have been shown recently to be closely associated with the high-energy protons
and relativistic electrons (Svestka and Fitsova, 1974). Type II bursts are never observed
before the microwave bursts, although = 20% are found to occur before the microwave
burst maxima. Svestka concludes from this, quite reasonably, that type II bursts are
closely associated with the primary acceleration process in flares. In general, type II
bursts show a strong preference for occurring when strong proton events occur. Although
Svestka argues throughout his discussion that anywhere from two to four acceleration
mechanisms are needed to explain the variety of affects caused by a flare, we feel only
two are necessary, as will become clear in Section 7. However we do not here treat the
second acceleration phase of the flare, since we feel it is clearly a secondary manifestation
of the primary energy release associated with stochastic processes, generated either by the
pressure pulse of the primary energy release or by the high-energy particles released dur-
ing the primary release. This subject will be examined elsewhere in more detail.

6
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Our discussion has clearly shown the need for a new, workable, flare model, and
such a model should at least be consistent with the results reviewed above as well as
those classical manifestations of flares, e.g., double flare ribbons. We will adhere to the
concept of a model as outlined in the introduction and attempt to explain the about
results as well as some others not discussed.

3. MHD STABILITY THEORY OF A DIFFUSE PINCH
3.1 Introduction

As noted in the introduction, we will find it necessary to review various mechanisms
which we will apply rather freely in subsequent sections. Since most of these mechanisms
have neither been collected together in a review or text nor been discussed adequately in
the astrophysical literature for present purposes, we will briefly review and discuss the
applicability of these mechanisms to our flare model. Thus the present section and
Sections 4 and 5 will be devoted to this purpose, thereby making the flare model reason-
ably complete and self-contained (Fig. 4 illustrates the sequence of mechanisms which will
lead to a flare in this model).

The principal geometry of the flare model to be proposed is that of a semitoroidal
magnetic arch, along which a toroidal current is assumed to flow in some as yet unspec-
ified manner and driven by as yet unknown mechanisms. The assumption that a toroidal
current flows along the main toroidal field of the arch implies that we are in reality con-
sidering a diffuse pinch bent into a half torus. Thus it follows that we will be interested
in the stability of such a configuration. As we will soon see, such a diffuse pinch will he
subject to MHD kink modes and resistive kink modes; the former differing from the
latter in that the former strictly conserves magnetic flux whereas the latter permits
reconnection within the arch. However both kink modes are driven by the magnetic field
energy stored in the poloidal field generated by the toroidal current, and one can excite
the other. Thus we examine the stability of the MHD diffuse pinch in this section and
the resistive diffuse pinch in Section 4.

As will become evident during our discussion of the MHD and resistive MHD stability
of the diffuse pinch, stability will be determined by the degree of magnetic shear in the
pinch and therefore the arch. However the stability criteria obtained depend critically on
the quantity k*B and where it vanishes, k being the wave-number vector of the perturba-
tion and B the magnetic field. Since the stability in both the MHD and resistive cases
was analyzed assuming cylindrical symmetry, which an arch clearly does not have, it was
necessary to show that the stability criteria obtained using cylindrical symmetry is valid
in more complex geometries such as the arch. This is done principally in Section 5.

During our discussion of more complex geometries in Section 5, we note that the
increase in complexity of the arch can give rise to complex nonlinear phenomena, which
may prove useful in explaining certain behavior of the solar flare in the context of this
model. These phenomena arise because of the complex distortion of magnetic surfaces
due to the arch curvature and the distortion of magnetic surfaces generated by the flux-
conserving MHD kink modes. This follows because, as will be seen, the resistive kink
mode can be treated as a symmetry-breaking mechanism, since it does not conserve flux.
Indeed, as we will see, the resistive kink mode can result in neighboring surfaces non-
linearly interacting with one another, thereby causing a sudden and dramatic increase in

7
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reconnection, over and above that caused by one surface reconnecting. Since this non-
linear phenomenon has a threshold it must cross before occurring, we will argue that it
may be one possible explanation for the nonthermal electromagnetic bursts associated
with flares. For this reason we review the basic ideas involved.

Because the location where k*B vanishes determines in part the stability of the pinch
and thus are arch, we examine in Section 4 mechanisms that can steepen the radial pro-
file of the toroidal current. Further, because there are mechanisms that may prevent this
current-density steepening, we collect and summarize the applicable mechanisms in
Appendix B. This is important, because the arches are observed to exist prior to flaring;
i.e., they were not arches emerging from the photosphere. Hence we need to know those
mechanisms that can lead to instability and how they manifest themselves.

Although this section and Sections 4 and 5 are principally devoted to reviewing and
collecting the instabilities pertinent to this model, there are a number of new discussions
not found in the literature, which will play a crucial role in the model to follow.

3.2 The Energy Principle and the Diffuse Pinch

Plasma instabilities are conveniently divided into two broad classes: configuration-
space instabilities and phase-space instabilities. Configuration-space instabilities result in
displacements of macroscopic portions of the plasma and can usually be treated theoreti-
cally by the fluid equations. MHD instabilities are configuration instabilities. It is found
theoretically that the infinite-conductivity-limit MHD theory provides a useful means of
understanding the gross behavior of plasma stability while providing thresholds and growth
rates. As we will show later, the inclusion of resistivity in general reduces the stability of
an MHD configuration and in some cases will actually cause an MHD stable configuration
to become unstable. A review of the MHD stability of the diffuse pinch will be the
primary concern of this section, although a brief discussion of finite resistivity on MHD
stability will be included. In addition a discussion of the effects of curvature on stability
will be included.

The stability of the diffuse stabilized linear z-pinch is a rather well understood
problem in plasma physics, particularly through the work of Newcomb (1960). The
theoretical means by which Newcomb studied the stability of a diffuse linear pinch made
use of the MHD energy principle of Bernstein et al. (1958). The energy principle
originates from the fact that the problem of stability is, mathematically, an investigation
of small oscillations about an equilibrium state. One assumes that the amplitudes of the
oscillations are small and then proceeds to linearize the equations of magnetohydro-
dynamics (Kadomtsev, 1965). After the appropriate substitutions and manipulations, one
obtains a single second-order differential equation for §, the displacement of the plasma
away from the equilibrium position, which is given by

02 1
% ;ﬁ = V(TP + YR TB) + 2= (7 X By) X [V X (§ X By)]

+ (VX [V X (§ X By)1} X By), (3.1)
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where B and P, are the equilibrium magnetic field and scalar pressure respectively. This
equation must be supplemented by the appropriate boundary conditions.

We may rewrite Eq. (3.1) as

aZ -~
by % =Kot = F), (3.2)
at?

where K is a self-adjoint operator and F(§) is a generalized force function. Since K is
self-adjoint, Eq. (3.1) or (3.2) can be derived from an action integral of the form

I =”<p—°:—2 - e-?-e)df*x dt. (3.3)

Since the equations are linear, the time dependence of all quantities can be expressed
in the form exp(- iwt). Thus, if the problem is simple enough, Eq. (3.1) can be solved
exactly and one has explicitly the characteristic eigenvalues w?, which, as is well known
(Landau and Lifschitz, (1960), determine the stability of the system. If w? > 0, the
equilibrium state is stable; w? = 0 is the marginal state; and if w2 < 0, the equilibrium
state is unstable. However, if the geometry is sufficiently complex that one cannot solve
Eq. (3.1) exactly, it is then sufficient to determine the sign of w? to determine stability.

Substituting § = §(r) exp(- iwt) into Eq. (3.2), multiplying the result by ¥, and
integrating over the plasma volume yields

. fgfk*-s d3x

Jpot d3x

The energy principle then states that the problem of stability reduces to determining the
sign of the integral in the numerator, which is just the right-hand term in Eq. (3.3), i.e.,
the potential energy. Hence the energy principle states that an MHD configuration is
stable if the potential energy integral is positive for every displacement § satisfyiug the
appropriate boundary conditions and is unstable if there exists a ¢ for which w? is nega-
tive. This energy integral is given by

w (3.4)

W) = 3 [10% + (£ X B) + (V-5E-VP + 7PV ) dx, 3.5)

where Q@ = ¥ X (¢ X B), j is the perturbed current, and v is the ratio of the specific heats.
We are dropping the subscript on the equilibrium quantities when no confusion will
result.

Because a coronal arch with a toroidal current has a toroidal magnetic field which is
probably a monotonically decreasing function of altitude, a stability treatment of such an
arch should take this effect into account. Such a treatment is analytically difficult. How-
ever the stability criteria to be derived does not in general depend on the position along
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the current path; hence ignoring the z dependence of the problem is a reasonable

approximation. It then follows, by virtue of the assumed axial symmetry of the pinch,
that we can limit our analysis to displacements of the form

E(r) = &(r) exp(im ¢ + ikz),
such that

£ = (5 &, £,
without loss of generality. In addition, because the derivation of the energy principle by
Bernstein et al. (1958) refers to a class of all possible displacements, it remains valid even
if the class of displacements is restricted by fixing m and k. A separate stability criterion
is then obtained for each set of values of m and k. This will be important when we limit

the wave number k, because of the finite size of the cylinder or arch.

A minimization of the energy integral (3.5) with respect to Ez and ¢ » can be carried

out algebraically and yields
b 2
w3 [ [f (Z—E) +g$2] dr, (3.6)
0 r

where b is the outside pinch boundary,

_r (krB, + mB, )2

= i (3.7)
am p2,2 4 2
and
2.2 2.2 2 _
go BB 1 g K emE o1
k2r2 + m2 dar 47r 4 k2r2 + m2
2
+ —22T (k2282 - m2B2), (3.8)

an(k?r? + m?)?

A B, radial component of the magnetic field does not appear in these expressions by
virtue of the assumed radial dependence of all the equilibrium variables.

Before extremizing (3.6) with respect to §, we can make use of the fact the W(t) is
unchanged when m and k both change sign to show that the m = 1 displacements are the
least stable. Excluding the m = 0 mode and letting # = mq, we find that the second term
in g is the only term that depends on m. Since this term is proportional to m2 and
positive definite, the least stable displacements are those for which m = 1, the so called
kink or helical mode. One can conclude from this result that if the pinch is stable for
iml =1, - oo < k < oo, it is also stable for all higher values of m. Physically the kink
mode can be understood using Fig. 5, which depicts a current, J, flowing in a plasma

11
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Fig. 5 — Hindering kink instability with tension of trapped axial fields

column along the axial field B,. The current j, produces an azimuthal field B, (in the
case of the arch B ” is called a poloidal field B ). If a kink develops, as illustrated, the
lines of force B, are closer together at the inside of the kink than at the outside. The
magnetic pressure, B2/87 acts to increase the kink, and the bending of B, results in a
restoring force directed oppositely to the B > force. It should also be pointed out that
the kink mode normally appears as one turn of a helix and not a simple displacement as
depicted in Fig. 5.

For m = 0, Eq. (3.2) reduces to

7fk2 b
W(E) = Wo(B) + —- foizrdr, (3.9)
(1]
where
we=-’ffb 32(i‘5>2+§‘f+25552d 3.10)
o®@=3 L |\ \F TP i @

Since the term containing k2 in Eq. (3.9) is positive definite, the pinch is stable tor all &,
if it is stable in the limit as k =~ 0. The m = 0 mode is usually called the sausage mode
and appears as an axially symmetric local compression of the plasma column.

At this point it is appropriate to modify the topology used by Newcomb (1960) by
demanding periodicity along the axis of the cylinder. This has the effect of simulating
the finite length of the cylindrical column or toroidal arch and, as will be seen, enhances
the stability of the pinch against both local and nonlocal modes. The wave number &
takes on the discrete values

(3.11)
where L is the length of the plasma column or arch (n = 1 corresponding to the longest

wavelength that can be supported by the plasma colui 1n). Because & can never equal
zero, m and k both cannot vanish. Hence we can mouify Theorem 1 of Newcomb as: A
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linear diffuse pinch is stable for all values of m and k if and only if it is stable for m = 1,
2n/L < k <o, and form = 0, k = 2n/L.

Extremizing Eq. (3.6) with respect to £ leads to the Euler-Lagrange equation

df.d
< ( &é) _gt=0, (3.12)
which must satisfy boundary conditions
Er=0)=0, if m+ %1, (3.13a)
and
=0 Lo, itm=21. (3.13b)

dr

Determining the stability of a diffuse pinch reduces to solving Eq. (3.12) for the
given variables B, (r), B, (r), and P(r) with a given choice of k and m. This is just an
example of the Strum-f.iouville problem. Hence the stability conditions for the diffuse
pinch can be expressed as follows: a necessary and sufficient condition for stability of a
diffuse pinch is that the solution of Eq. (3.12) have fewer than two zeros in the interval
o0<r<bp.

To understand this statement, we proceed following Kadomtsev (1966). To solve
the complete eigenvalue problem for the dynamical stability of the diffuse pinch, one
must find an extremum of the Lagrangian L = T - W rather than extremize the potential
energy W as we have just done. Extremizing L leads us to the expression
d dt 2 _
ar ( d,) (w0 -2 =0, (3.14)

where w? is the square of the frequency and p(r) is the mass density. It follows then
that Eq. (3.12) represents the marginal state of stability i.e., w? =0. If w? <0, the
instability case, the contribution to the effective g(r) is positive, and if w? > 0, the
stability case, the contribution to the effective g(r) is negative.

If we now assume the solution to (3.12) has two zeros in the interval (0, &), then
adding a positive-definite term to (3.12), as (3.14) represents if w? < 0, will shift one
zero to the r = 0 boundary and the other to the r = b boundary. Since this displacement
results in a solution that is still bounded, with both boundary conditions satisfied, the
diffuse pinch will be unstable (w2 < 0). However, if there are fewer than two zeros in
the interval (0, b), we find that a positive contribution, w? < 0, does not give a solution
that is bounded, and only a negative contribution gives a solution that both satisfies the
boundary conditions and remains bounded. Since a negative contribution corresponds to
w? > 0, we conclude that only solutions with fewer than two zeros correspond to a
stable solution.
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Thus (3.12) has three regular singular points, which occur when

r=0, (3.15a)
mBo

k-B=kB, + - = 0, (3.15b)

r = oo, (3.15¢)

Only the singular point (3.15b) will concern us here, since, as is shown by Newcomb
(1960), the solutions to the Euler-Lagrange equation. (3.12) never oscillate at the singular
points (3.15a) and (3.15¢c), whereas the solutions near the singular point kB = 0 may
rapidly oscillate, producing many zeros and thus instability.

Because in general it is not possible to continue an Euler-Lagrange solution which is
real past a singular point, we cannot speak of an Euler-Lagrange solution in the entire
interval 0 < r < b if a singular point exists within the interval. However it is possible to
divide the interval 0 < r < b into subintervals so that within each subinterval there are no
singular points. Hence one modifies the stability criteria to take into account these
singular points. It then follows, if zeros succeed each other more rapidly than the end-
points of the independent subintervals, that the diffuse pinch is unstable (Newcomb,
1960).

Singular points given by k*B = 0 may be characterized as those values of r for which
m, + kz, the phase of the displacement £, is constant along a line of force; i.e., the pitch
ofo the lines of force match exactly with the pitch of the perturbation k/m. Since the
perturbation is constant along the lines of force, the perturbation is a convective perturba-
tion. Such a perturbation permits the free interchange of lines of force without apprecia-
ble distortion of the magnetic field. Such interchanges, as is well known, lead to insta-
bility (Kadomtsev, 1966).

3.3 Suydam’s Condition
To proceed, we now examine the behavior of the marginal Euler-Lagrange sclutions

in the neighborhood of the singular point corresponding to k*B = 0. To do this we first
introduce the quantity

B= =, (3.16)

fry= — ——~ (3.17)
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and
2r2k2
2,2
“r):LQ_&?EL(u_ﬁ) 1
<l+ ,2k2> dr 4n m2 m2 ( . k2p2 )2
m? m?

(3.18)

The singular point (sometimes referred to as the singular surface) occurring at kB =0
then becomes equivalent to

k
— =-ulr,), (3.19)

where r, denotes the value of r where k*B = 0, i.e., where the Euler-Lagrange equation
becomes singular. We now expand f(r) and g(r) around the singular point r. Thus

3>

p+ = = u'x, (3.20)

where x = r - r, and u = dy/drl,.,-s. Such an expansion necessarily implies that we are
examining local perturbations about the singular point which correspond to high m. A
Taylor-series expansion of (3.17) and (3.18) yields

3282 o\
f(r)mE Pz (d log“>] x2=ax2 (3.21)
4"32 dr r,
and
2R2
~ |—2 9B
8(r) 2 dﬂ B8, (3.22)
r

where B2 = B: + BZ, 5o that (3.12) reduces to

a4 (2 d_f.)_ .
@ dx(x =)-se=o0. (3.23)
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The solutions to (3.23) are x "1 and x "2, where n, and n, are the roots to the
indicial equation

2 _ . E)=
n?-n (a 0 (3.24)

obtained from the power series solution of (3.23), i.e.,

f=an ) cpal. (3.25)
=0

The roots of (3.24) are real and unequal if o + 48 > 0 and are complex conjugates if o +
43 < 0. The real solutions of the Euler-Lagrange equation corresponding to o + 438 < 0
are

E=x""+x"" and £=i(x™" -x"""), (3.26)

which are oscillatory in the neighborhood of r,. Since we require the solutions to be
nonoscillatory near r;, we must take the roots corresponding to o + 4 > 0, which then
gives a necessary condition for stability, first derived by Suydam (1958) and generally
called Suydam’s condition:

"2
1<ﬁ> L8P (3.27)

Equation (3.27) has a number of physical consequences. Since for small but non-
vanishing values of r Suydam'’s condition reduces to dP/dr > 0, we can conclude that a
necessary condition for stability is that the plasma pressure should have a minimum at
r = 0 (Newcomb, 1960). This follows because the dP/dr term is only of order r. It
further follows that any pinch with a pressure distribution that decreases in a radially
increasing direction is unstable if u = constant and is absolutely unstable if B, = constsnt
and the current density is uniform (Kadomtsev, 1966).

Physically it is of interest to ask how the instability manifests itself if the Suydam
condition is violated. To answer this question, we follow a heuristic argument due to
Suydam (1958). Let us assume a displacement ¢ corresponds to an unstable solution to
(3.12). This will lead to new values of P, B¢, B,, and p in the neighborhood of the
singular point k*B = 0. Since this instability is convective, we expect mixing of the per-
turbed quantities. We simulate this mixing by replacing P, p, B, and B, by the values
obtained by averaging over the angle ¢. We then ask whether the new distribution is
stable or unstable using Suydam’s condition again. We find that the convective mixing
results in a distribution which is less unstable on the inside and more unstable on the
outside. Thus, if some interior point or surface were unstable, it would convect outward
until it became stable, and this in turn will upset the stability of the next surface exterior
to it. This perturbation would then convectively propagate toward the outer boundary,
greatly increasing the volume of instability. This situation can easily occur in the arch
because of its large length and therefore closely spaced modes.
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Two things are to be remembered concerning Suydam’s condition (3.27). It is only
a local stability criteria and thus is valid only for high m modes, m >> 1, near the
singular surface k°B = 0. In addition Suydam’s condition breaks down if both dP/dr = 0
and u’' = 0 at some value of r. To treat this case requires retention of higher order terms
in our Taylor-series expansion of {(3.17) and (3.18). Goedbloed (1973) has examined this
question and obtains a generalized Suydam’s criterion valid even if dP/dr vanishes, e.g., a
force-free pinch. Here we only reproduce the result, noting that the analysis follows lines
similar to the derivation of the Suydam condition given here. Goedbloed (1973) finds

2p2 ' 2
C_i_1:+B¢Bz B,u _ B¢B: >0
dr  4np3 | mu 2nrm2B6 '
if
483, B,u
1<<Im< — | —1, (3.28)
rB? | By'
and
2 "2
ar B (u_> >0
dr 327 \u ’
if
2B
Im| > ——23 - f (3.29)
B

These conditions are necessary conditions for stability and are valid only for low-shear
systems.

3.4 Shear Stabilization

Before proceeding, we will discuss the question of shear and its effect on stability. A
magnetic-field configuration is said to have shear if

du
ar #*0, (3.30)

4 being defined by (3.16). A magnetic arch with an extreme case of shear is illustrated
in Fig. 6. If a magnetic system is shearless, we can easily conclude that the pitch of the
lines of force is independent of radius. This permits the free interchange of any two field
lines, separated by any radial distance of that magnetic-field configuration. This inter-
change or convection occurs simply because the field lines are identical, i.e., the system is
degenerate. As is well known, such an interchange is highly unstable (Kadomtsev, 1966),
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Fig. 6 — An example of a sheared magnetic field in an arch

since it causes 2 minimal distortion of the magnetic field, thereby minimizing any restor-
ing forces the distortion of the magnetic field might produce which would tend to cause
the equilibrium state to be restored. The perturbation would then tend to grow. Hence,
by inducing shear, the field lines form an angle with respect to one another, which effec-
tively limits the length over which convection of the field lines can occur to a value

L ~ 2nB2((BZry).

Imposing the condition that the field lines have a finite length and are embedded in
a plasma with high conductivity at each end has an effect similar to shearing the field
lines. This occurs for two reasons: it limits the maximum wavelength of a perturbation
to the length of the system, as pointed out earlier, and it inhibits the long-wavelength
interchange of fields. This can be seen as follows: Suppose two field lines are frozen to
conducting endplates. To obtain instability requires the potential energy to be negative.
However, the only way to interchange two field lines frozen at different points on an
endplate is to twist the field lines. This however requires energy; hence the potential
energy of the system will increase, not decrease, due to this form of interchange. Thus
tying the field lines tends to increase the stability of the system.

3.5 The Kink Instability

As we have found earlier, the most unstable modes correspond tom =0 and m = 1,
the m = 1 mode being the least stable. An examination of Eq. (3.10) shows that the
diffuse pinch is unstable to the sausage mode when

B, = — (3.31)

is large. Hence demanding a small 3, will stabilize the m = 0 mode. However the kink
mode (sometimes called the helical or screw mode) is not easily stabilized. As we have
already seen from our local analysis of the high m modes, perturbations with a pitch
matching the pitch of the field lines are the most dangerous. Although the local analysis

18
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of high-m modes is not valid for nonlocal perturbations Im| = 1, it still follows that a per-
turbation with a pitch equal to that of the field is dangerous.

A condition for stability of the kink mode may be obtained by examining the
resonance condition between the pitch of the field and perturbation, namely kB = mB s/
r+ sz = 0. Since by Eq. (3.11) k = 27n/L, this condition may be written as

m+nqg =0, (3.32a)
where
21rrB’z
q(r) = LB, (3.32b)
is called the safety factor. When
a)= = (3.33)

the perturbations are resonant and appear helical or like a screw thread. This can be seen
by noting that helical lines have a pitch

dp _ n2n
dz mL (3:34)
and that the magnetic field lines have a pitch
do _ B,
= "B (3.35)

When these pitches are equal, we have the resonance condition k*B = 0 and the perturba-
tions are thus helical. In particular, when

¢ <1, (3.36)

the most dangerous kink mode m = 1 and n = 1 is unstable, in addition to any other kink
mode that satisfies the condition m/n = 1. When g > 1, we have the so-called Kruskal-
Shafranov condition. Hence we can state that if the safety factor ¢ drops to < 1 any-
where inside or outside the plasma, the pinch is unstable. However even if the condition
q > 1 is satisfied everywhere in the plasma, there can still be unstable kinks (with m/n >
1) provided the point q(r) = m/n falls into a plasma region of finite electrical conductivity.
In this case the unstable mode is called a resistive kink or a tearing mode (and in the
Soviet literature is referred to as the resistive screw instability).
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3.6 The Role of Resistivity and Curvature

The effects of resistivity on stability will be discussed in detail in the next section.
However it should be obvious that permitting finite resistivity will lower the stability of
a pure MHD configuration (n = 0). The differences between a situation where = 0 and
n # 0 are principally that with n = 0 the field and plasma are frozen together: where
one moves so must the other. When n # 0, slippage can occur, such that the plasma can
lag behind when the magnetic field changes. Hence within a configuration that is MHD
stable the presence of finite resistivity will permit previously forbidden deformations of
the plasma to take place that are often unstable. In particular we will find that resistivity
can destroy stabilization achieved by shear. For example consider the diffuse pinch. If
it were to kink without completely carrying the Bz component of the field with it, a j’
current component will result in addition to the original j,. This new j; will give rise to
an additional j; X B, force which causes the perturbation to grow.

It would be appropriate to examine the affect of curvature or toroidal effects of a
magnetic arch on MHD stability. Let us first examine Laplace’s equation in cylindrical
coordinates:

s N2 n2
& <ﬂ>+ Ll . NI Y (3.37)
r or \or 922 2 g2
Upon introduction of the new dependent variable
11} =‘/:?- w (338)
Eq. (3.37) becomes
a2 32 02
2y, 20, _1_(__" v, £>=o, (3.39)
ar? 022 ré \ 0¢2 4
which in terms of toroidai coordinates
r=pcos+R
and
2=psin0
becomes
2 2 2
13(p@)+l_aw+ 2V gp el IV (3.40)
p O 9l 2 392 3(R9)? R arey?

where p is the minor radius of the torus and R is the major radius.
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The term on the right-hand side of (3.40) represents the correction due to curvaiure.
As p/R = 0, we regain the cylindrical geometry. Hence if the inverse aspect ratio < = p/R
is small, then the toroidal effects are small. For magnetic arches < =~ 1/5 to 1/10, and
the approximation of cylindrical geometry is usually sufficient. The only change necessary
when considering a magnetic arch is to let L = mR in Eq. (3.11).

However one must not conclude from the above illustrations that curvature is totally
unimportant. Consider first what occurs on bending magnetic field lines: If the lines of
force are curved with a constant radius of curvature R, such that IB| is constant, then
charged particles will feel a force

meva
F = , .
of R;" (3.41)
which gives rise to a drift
2
m,u;R, X B
Ve —————— (3.42)
eB?R?

When we compute the V|B] drift which would naturally accompany a bent magnetic field,
we find a drift

2
m, v°R_XB
vog - 173%™ " (3.43)
2 e REBZ
The total drift in a curved vacuum field is thus
v ——— (unz + 5 uf) : (3.44)

2n2
eRCB

Because the two drifts add, the bent magnetic field or arch cannot confine a piasmas
within it; the plasma will just drift out, so that an equilibrium cannot be set up. Thus it
is appropriate at this point to show why a toroidal current in an arch is needed to contain
the high-density plasma observed within arches.

Consider Ampere’s law

n
foedi= [ Bras-1 (3.45)
v 0

where we have assumed that the toroidal field component of the arch BT varies as B

r! for simplicity. Because the gyrating particles have unequal Larmor radii in opposne
halves of their orbits (Fig. 7), the ions and electrons drift to the sides of the arch and set
up a horizontal electric field. This E field will cause an E X B drift away from the major
axis (upward). To reduce this effect, one permits a current to flow in the toroidal
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IN A SIMPLE TORUS IN WHICH THE LINES OF FORCE ARE CLOSED CIRCLES, THE MAGNETIC

FIELD VARIES AS 1+ THE RESULTING U B DRIFTS CAUSE A VERTICAL CHARGE SEPARA
TION, WHICH IN TURN CAUSES THE PLASMA TO DRIFT QUTWARD

SOLAR SURFACE

IN AN ARCH WITHOUT A CURRENT THE T B DRIFTS CAUSE A HORIZONTAL CHARGE
SEPARTION, WHICH IN TURN CAUSES THE PLASMA TO DRIFT UPWARD.

Fig. 7 -- Plasma drift motions in a curved magnetic field
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direction, which causes the field lines to appear twisted to the particles. Thus a particle
gyrating along a field line will have an orbit which causes it to move upward and then
downward. If one considers this effect from a fluid point of view, a helical line will
connect regions of positive and negative polarity and will thereby short-circuit the hori-
zontal electric fields. The helical field line will have a similar effect on any inertially
induced electric field, e.g., a Rayleigh-Taylor-type instability.

To determine how good an approximation cylindrical geometry is when considering
a curved system, it is sufficient to consider growth rates (Shafranov, 1970). In our dis-
cussion we found principally two types of instabilities: localized convective instabilities
and nonlocalized kinklike instabilities. A localized convective instability in a pinch will
have a growth rate (Rosenbluth et al.. 1962)

) (3.46)

where g, P is an effective gravitational acceleration, which for a flute is

BZ
~ 4
&~ Tmp K, (47

where R = rOB%/B2 is the average curvature of the helical field lines (not the arch curva-

ture). T‘m growth rate (3.46) corresponds to a force

2 <B§ > szv £
27”'0 B%- TO

acting per unit length of plasma.

If we compare this force with the force arising due to the global curvature of an
arch,

82 \ r2
Fp = <—” -‘l> £ (3.49)
47"‘0 R2 ro

where R is the global curvature of the arch, we find that these forces are comparable
when the safety factor g satisfies

q=21. (3.50)

If then follows that flute instabilities of an arch must be studied by taking into account
the global curvature of the arch. However, as we would find if we were to examine
growth rates, the kink instability has a growth rate BT/B greater than the convective
instability (in cylindrical geometry B, /BQ)). Since BT >> Bp in cases that will interest us,
we can conclude that MHD kink instabilities are so strongly growing in comparison to

23

a4




DANIEL 8. SPICER

local convective instabilities that the cylindrical analysis is adequate to treat the nonlocal
kink modes (Shafranov, 1970) in arches.

3.7 Nonlinear Studies of the Kink Mode

Most nonlinear studies of the kink mode have heen directed toward obtaining stable
solutions to the pinch when the kink distorts the pinch sufficiently to cause it to buckle,
which is generally referred to as pinch buckling. However to the author’s knowledge no
steady-state solutions have ever been found. The interested reader should consult
Friedrichs (1960) and Yeh (1973) and references therein. QOther nonlinear studies have
heen directed at studying the growth and nonlinear saturation of the kink.

One method employed (Rutherford et al., 1971) was to look at a bifurcation of the
equilibrium solutions. Qualitatively the idea was to consider an equilibrium configuration
which is marginally stable to a particular mode (m, k), and seek a neighboring equilibrium
with an infinitesmal kink in it. Thus, if the plasma configuration is slightly on the
unstable side of marginal stability, then one should look for neighboring equilibria which
possess a finite kink. If one can find this new equilibrium, i.e., if it exists, the amplitude
of the kink can then he determined,

Kadomtsev and Pogutse (1974) proposed that the kink modes were nonlinearly
unstable and, in so being, go to a very distorted final equilibrium which has little relation-
ship to the initial equilibrium. They showed that this final equilibrium would in part
have a vacuum or bubble within it, the mode number m determining the number of
bubbles. However, numerical stimulation experiments (White et al., 1974) have found
that when more realistic current-density profiles are taken into account, the nonlinear
kink results in the deformation and compression of the flux surfaces on one side of the
pinch.

4. RESISTIVE INSTABILITIES IN A DIFFUSE PINCH
4.1 Introduction

Resistive instabilities are important in the flare model to be developed, because they
allow a greater rate of magnetic energy conversion, for a given value of resistivity, than
the rate allowed by normal resistive diffusion. Thus resistive instabilities represent a
means of rapid transition from a phase of the arch where significant conversion of
magnetic energy does not occur to a phase where this conversion occurs at a rapid rate,
thereby causing a flare.

Resistive instabilities differ from MHD modes in that finite resistivity is required, so
that modes which are topologically inaccessible in the zero-resistivity limit become
accessible when resistivity is taken into account. For example, as is well known, the
MHD assumption 7 = 0 constrains one to conserve magnetic flux, so that

— =0, (4.1)
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where

L,
@ = ¢ B-dS. (4.2)

Thus the potential energy in the MHD limit can be lowered only if the motions obey this
constraint. This constraint implies magnetic surfaces remain well defined and the topology
of the field cannot be broken up but can only be distorted. However, when finite
resistivity is permitted, this constraint is relaxed, so that

(;—(:3 = IR, (4.3)

where [ is the total current and R the total resistance. Hence magnetic flux need no
longer be conserved; i.e., reconnection can occur, e.g., by the tearing mode. The ensuing
reconnection manifests itself as thermalization of magnetic energy, i.e., joule heating, and
directed plasma flow. '

As briefly discussed in the previous section, resistivity can alter the stability of a
stable MHD configuration. The high temperatures of the solar atmosphere necessarily
imply high electrical conductivities. As is well known (Jackson, 1962), a hydromagnetic
state can be characterized by the magnetic Reynolds number

s= = (4.5)
o
where
4ma?
Tp = p (4.6)
nc
and
aldn 1/2
Ty = ~(—£’— : (4.7)

If § >> 1, the plasma is effectively frozen to the magnetic field, and S << 1 implies the
plasma may diffuse relative to the field. Since S is lasge in the solar atmosphere, S~}
may be used as an expansion parameter in the hydromagnetic equations. Assuming there
are no discontinuities in the equilibrium configuration of ti.e plasma-magnetic system, one
can show that the eigenfrequencies, obtained when using the MHD approximation, are
altered at most hy terms of order S-!. Unstable MHD modes are therefore affected
little, and stable modes cannot hecome unstable to any degree, since their maximum
growth rates are of order 7,. Hence one must look for new unstable modes, which exist
only with the presence of finite resistivity. Specifically one searches for modes which
are topologically inaccessible in the MHD analysis; that is, one looks for modes in which
magnetic flux surfaces, which are initially separated, can link up during the evolution of
the perturbation.
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4.2 Resistive Instabilities in Planar Geometry

The treatment of resistive instabilities is in general more complex than MHD insta-
bilities, because the resulting differential equations are fourth order, and the important
modes are spatially localized in a small neighborhood centered around the singular sur-
face k*B = 0, or result from modes which are singular in the absence of dissipation. The
significance of the singular surface, as will become clear, derives from the fact that when
the resistivity is finite, the plasma is completely detached from the magnetic field in a
small region around the singular surface. Such an effect enables the system to go from
states of high potential energy to states of neighboring lower potential energy, which are
not accessible without dissipation. In particular the energy released when going from the
higher potential state to the lower potential state thermalizes the magnetic field and
generates directed kinetic energy.

The general development of the theory of resistive instabilities began with the work
by Furth, Killeen, and Rosenbluth (1963), whose analysis is based on an extension of
the MHD theory by inciusion of the relevent dissipative effects. We will here briefly
summarize the analysis involved, using the FKR paper since it provides a useful clarifica-
tion scheme for the various resistive instabilities to be discussed throughout the remainder
of this report. To begin, we assume the MHD approximation is valid and that pressure
and inertial terms can be neglected in Ohm’s law. Isotropic pressure and resistivity are
assumed, and the plasma is considered incompressible. Perturbations in resistivity and
the effective gravity (curvature, acceleration of the current layer, etc.) can result only
from convection. The equations we will use are

0B c?
at-VX(vXB)-thX(TIVXB), (4.8)
1 .
E+ZVXB=T]] 4.9)
and
dv\ _ 1 3
curl <p &T>— curl (H (curl B) X B + pg) . (4.10)

Since the treatment is principally concerned with resistive instabilities whose growth
times are long compared to MHD transit time, we are justified in using the incompressi-
bility approximation Vv = 0.

Since we are examining only changes in resistivity that result from convection, we
have

on —_—
ot +veyy=0 (4.11)
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and

9 -
EY; (pg) +v(pg) =0, (4.12)

where p is the mass density.

First-order quantities are denoted by the subscript 1. Using the equations V*B, = 0
and Vv, = 0, we obtain the perturbed first-order equations from Egs. (4.8) through
(4.12):

oB

_tl =(Bo'V)v1 '(vl'V)Bo +

2
c 2 2 2.
3 (ngV B1 +n, v Bo) + ¢ curl B1 X Vng

ar

+c2 curl By X ¥n,, (4.13)

] 1
-0 3 (V2v1)=curl curl{E [(By*V)B, +(Bl'V)BO] +(pg)l}, (4.14)

on

a_tl. + (vl.v)no =0, (4.15)

and
3 +(v,° =0 4.16
3¢ (P91) + (v °V)(pgy) = 0. (4.16)
We will first consider a simple sheet-pinch model. Consider an unperturbed magnetic
field which is sheared in the y direction.
By =iB,(y) + kB, (y), (4.17)
with all perturbed quantities varying as
8f(x, t) = f(y) expli(k,x + k,2) + wt]. (4.18)

Following FKR, we find the perturbed equations can be reduced (after some algebra) to
two coupled second-order differential equations:

g .¢(1+ ;,_%2—)+%<£+ ?.f.) (4.19)
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and

ayartyt 2 2 st o ’
W) =W75--s-—G+F—S<§+Z f)+ws2<5-f), (4.20)
2 2 P \T @op 7o

where differentiation is with respect to u = y/a and where we define the dimensionless
variables

Bly R
v B T
Ty
W=-iv1ykTR, p=wry,
F: k_.g n = nO(”)
kB ° M=2Z5>
o = ka, B = (B2 *’33)”2,
po(ﬂ)
= (b2 + p2)1/2 ~ 077
k= (kg ky) g 5> (4.21)

Here a is a length characterizing the width of the current layer, 7, and 7, are characteris-
tic resistive diffusive times and MHD transit times, ie,

. = 4ma® and 7. = a(41r<p>)1/2
k <n>c? H B

in which < n > and < p > are average measures of the resistivity and density and G is a
quantity representing the driving force due to the effective gravitational force. For
example G = (w,7,)!/2, where wy = (g,ob/po)l/2 is the growth rate for a flute. The
variable S is the magnetic Reynolds number, which, when large, implies the magnetic
field and plasma follow each other’s behavior closely, y is the perturbed magnetic fieid,
and W is the displacement caused by the perturbation. Since in equilibrium v, = 0 and
Vx(nOVxBo) = (0, we have the additional constraint

i F' = constant. (4.22)

The quantity F plays an important role in what is to follow; therefore its interpreta-
tion should be made clear. The unperturbed magnetic field always appears in Eqgs. (4.19)
and (4.20) in the form k*B. Since B possesses shear by assumption, we can always
choose k so that there is some u = y/a for which F = k*B/kB = 0. When this occurs, we
are at the singular surface as discussed in the previous section. We should expect then
that any unstable modes will be sharply peaked about this surface (a plane in the present
case and a helical ribbon in the cylindrical case), since at this surface the pitch of the
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Fig. 8 — Equilibrium sheared magnetic field

perturbation equals the pitch of the unperturbed field. In particular, at this surface the
plasma and field are decoupled. To see this, consider Eq. (4.13):

T >~ 1(k'B)vly + i oV Bly. (4.23)
When the plasma temperature is high, Mg is small, so that the last term on the right-hand
side of Eq. (4.23) is small compared to the first term and can be safely neglected. How-
ever, when k*B = 0, the last term can no longer be neglected, so that, when kB = 0 at
the singular surface, the plasma and field are completely decoupled. Also, if reconnec-

tion is to occur, i.e., B1 #+ 0, Ny must be finite. This follows because if Ny = 0, Uy
must be in finite to produce a finite Bly at k*B = 0. ’

In the interest of clarity an example is in order. Using Fig. 8, we assume an equili-
brium magnetic field exists with the properties B = (y, 0, 0) such that B ; =y in the
interval - a <y < g. Thus, it follows from Ampere’s law that j = (0, 0, ¢/47). and we
see that the equilibrium magnetic field reverses direction when crossing the y = 0 Jayer;
i.e., the field experiences a 180° shear at the y = 0 layer, and a neutral point in B occurs
at y = 0 at every x.

The condition k*B = 0 implies a wave-number vector k can always be chosen for a
given perturbation of that k*B will vanish at any desired point. This argument is sup-
ported by the fact that the component of B perpendicular to k is ignorable in the equa-
tions describing the perturbed fluid and field. Thus any field configuration can be re-
duced to that of a problem in the (k, ¥) plane by using the plane defined by the vectors
k and B; i.e., by choosing k in the direction of the x axis in Fig. 8, we obtain the con-
figuration previously considered.

Consider a twisted magnetic field that is sheared in cylindrical coordinates (r, ¢, 2).
We know k*B : kB, + mB , /13 hence k*B = 0 represents a helical line drawn about the 2
axis, with the pitch of the perturbation matching the pitch of the field. Thus on either
side of this line the lines of force have a pitch which differs by 180°, which corresponds
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to oppositely directed fields on each side of the resonance line r = r,. This line may be
rotated about the z axis to form a helical surface, which can be viewed as a helical cur-
rent sheet.

Using Eqs. (4.19) and (4.20), we can show, following FKR, that the unstable modes
grow and do not oscillate. Rearrangement of Egs. (4.19) and (4.20) yields

2 2 s
2” [( W'y +cx2W(s G ﬂ—(pw + WF)(pF - i) (4.24)
a?S%F p?
and
2 2 4
2 [(mv’)'w?w(S—zf -aﬂww"-pw(w %) (4.25)
a“S“F p

Using Eqgs. (4.24) and (4.25) with the normalization condition #F' = 1, we find

vl %)

+1y' 12+ g2 (a2 + %) }dy = 0. (4.26)

FII
~Hg 2 2 <PF' -—>
[ [ samap- S0 L2

lp|2&2s2 F’I

.#l p IF_.__.

Taking the imaginary part of Eq. (4.26), we get

(BIW'12 + o IW)2] + 0

2
Ip12a2s2 o F
pF F

|2
Pl -+ £)
Im(p) f 2Relp) ' P2 hau=0. a2m

By our normalization ffF’ = 1 and F' > 0. Hence, if Im(p) # O, we must have
Re(p) < 0. For instability (p > 0) it is necessary to have negative contributions of suf-
ficient magnitudes from the terms which satisfy Eq. (4.26). Each possibility gives rise to
a different type of resistive instability. They are:

® Graviwational mode. For large Reynolds number S and G > 0, but S not so large
that we obtain the MHD mode, the required negative contribution is provided by the
term containing G in Eq. (4.26);

® Rippling mode. V is peaked near the singular surface F = 0, and, if F"/F > 0,
the required negative contribution comes from the second term in Eq. (4.26);
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® Tearing mode. If a? = (ka)? is sufficiently small and F"/F < 0, the third term in
(4.26) can be negative.

The rippling and tearing modes require a nonuniform resistivity and thus a nonuni-
form shear. This can be seen by differentiating the normalization condition #F' = 1 with
respect to u:

F'=- l 51_77_ . (4.28)
1~72 du

As we have already established, resistivity is important only near the singular surface
k-B = 0. Hence it is reasonable to use the MHD (r = 0) solutions to Eqgs. (4.24) and
(4.25) for ¥ except in the neighborhood of the singular surface. Letting S = o in Eq.
(4.24) yields

py =-FW, (4.29)
which is valid everywhere except near F = 0 (k°B = 0). Letting S ~ o in Eq. (4.25)
yields
F"\ WG
" _ 2 - - 7
Vi y<u. + 7 > oF 0 (4.30)
Using Eq. (4.29) in (4.30), we find
F" G
" - 2y — - Z)=0. .
] d/((x + F F2> (4.31)

This equation is called the infinite conductivity equation and must be satisfied everywhere
except where F = 0. Only Eqgs. (4.24) and (4.25) are valid at F = 0. A formal means of
solving the equations is to use Egs. (4.29) and (4.31) for asymptotic solutions to Fys.
(4.24) and (4.25), which break down at F = 0. Making a power-series expansion of Eqs.
(4.24) and (4.25) around the point corresponding to F = 0 yields the solutions valid
where F = 0. Hence matching these two sets of solutions yields a complete solution to
the problem. We will not consider these solutions here but rather examine those proper-
ties of the modes which lend themselves to simple approximation arguments.

Assume in Ohm’s law, Eq. (4.9), that the plasma is moving but the magnetic flux
lines are not (i.e., E = 0). Thusj = (v X B)/nc and there is a resultant volume force

1 _ [B(v-B) - vB?)
F,= 2 (iXB)= ———nc2 ; (4.32)
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Fig. 9 — Geometry of a resistive sheet pinch

which is a restoring force except where B = 0. For our purposes B refers only to the
components in the (k, y) plane (Fig. 9). When instability occurs, there will be a volume
driving force F, which opposes F8 and which is of the same order as F_. Thus the rate at
which work is done on the plasma at the singular surface (k-B = 0) is of the order

vZB2  v2(B)%(ea)?
P~y F = x

s
nc? nc?

(4.33)

The component of B in the (k, y) plane has a value B = B'ea near the singular surface, in
which € is a dimensionless quantity used to measure the width of the region of interest
where the mode is localized. Furthermore, since Vv, = 0, y, = v_/kea. In general

eka << 1, so that the plasma kinetic energy in the k direction is dominant and of order
(ke )~2 greater than in the y direction. Equating the driving power and the plasma kinetic
energy yields

2 2 2 2
wWEaU ve(B)“(ea)
wpgul = foy % : (4.34)
(kea)2 nc2

The perturbation is thus localized to a region of thickness
2\1/4
WPNHC
€@ax|——— . (4.35)
k2B’
Gravitational Mode

Estimation of growth rates requires an examination of specific modes. We consider
first the gravitational mode, where the destabilizing force takes the form

!
Uy Po9

w

FD, = p‘g = o (4.36)
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Equating F,, v with Eq. (4.33), we have

(By)*(ea)®  pig

- (4.37)
1702 w
and making use of Eq. (4.35) gives the growth rate
2/3
' n
po8ke V 5—\
w=| ——2 ) . (4.38)
BO
In terms of the dimensionless variables previously defined we have
p =~ a2l3523G23, (4.39)
and
€~ a—-l/3s—-1/361/6' {(4.40)

It is important to note that since S and « are generally quite large, we will have
growth rates which are fast when compared to the classical diffusion time, and, since € is
small, the modes will be spatially highly localized. The gravitational mode is of basic
interest here, because the term gdP,/dy can be interpreted approximately as (dPy/dy)/R,
where P is the plasma pressure an R is the radius of curvature of either arch or hellcal
curvature due to the twisting field lmes in the arch.

Rippling Mode

We next consider the rippling mode. The rippling mode is of interest because it is
an instability which can convect current from a region of high resistivity into a region of
low resistivity. In particular the current can form fine filaments of high current density.
If certain conditions are satisfied, the current density within these filaments can grow by
the resistive superheating instability (Kadomtsev, 1966) leading to other instabilities. This
effect will be discussed in detail later.

To consider the rippling mode semiquantitatively, we must consider an additional
term in the expansion of Ohm’s law, i.e.,

vXB
Tloll +ndp = s (4.41)
where
V'Vno
n =- (4.42)
w
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The additional 1, term gives rise to a volume force

i XB  vunyixB
F, = = . (4.43)
c cwny

which can be stabilizing or destabilizing depending on the sign of Vn,. Hence both a
stabilizing and destabilizing rippling mode exist.

Equating v-F,, with Eq. (4.33), we obtain

vyng(B)(ea)  vE(BP(ca)?

4.44
4mwn, ’?o"z ( )
or
npc?
cax = (4.45)
Using Egs. (4.35) and (4.45), we obtain
’ r 1/5
1704C6k23 2
W = | —————— (4.46)
(4m)*ponye?
and
ngcz 4.47
€ I— . (4.47)

We see that this mode depends in an essential way on nb(% Mg /a); i.e., a resistivity
gradient must exist. Since resistivity classically depends only on temperature (with a
weak logarithmic dependence on density), we can conclude that classically the rippling
mode requires a current distribution in which a temperature gradient exists.

Tearing Mode

The tearing mode differs from the gravitational and rippling modes in that it is a
long-wavelength instability in the y direction rather than a short-wavelength mode relative
to the dimension of the current layer. Furthermore it is a pinching instability whose
driving energy comes from the gross configuration, i.e., the structure of the configuration
outside of the singular layer. It does not exist in the limit § = 0. In particular, in the
cylindrical diffuse pinch it is just a resistive kink instability. But most important, it is
able to lower the energy content of the equilibrium magnetic configuration by joule heat-
ing and bulk plasma flow, the flow being directed along the helical sheet formed by the
kink.
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The perturbed current is

oB
4 . - k1 _ ’
2‘— "ll (.)—y— _Bk‘ (448)
which is perpendicular to the (k, y) plane. Using ‘7'Bl = kB, + B;, = 0, we have
cB;
= g7 (4.49)
If ka << 1, i.e., for wavelengths greater than the current-layer thickness,
By
B! = . (4.50)
(€ka)a®
The plasma is still not perfectly decoupled even near the singular surface, and
wB,,
E, = e (4.51)
must be included in Ohm'’s law,
) v, X B
Noly = El + " (4.52)

The quantity €a must now be selected so that E; dominates v; X B in the region of
partially decoupled plasma flow. Hence for instability

n.cB wB
0y 2 (4.53)
4rke(ka)a® ke
or
nyc?
€@ —— . (4.54)
47rka2w
Using Eq. (4.35), we have the growth rate
0 T/
nSCGB 2
W | ——— (4.55)
(4m)*pok%a®
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TEARING MODE

Fig. 10 - Perturbed fields and velocities for
resistive instabilities

and
noc2
€ —— (4.56)

4mkad w
The perturbed fields and velocities for the three modes discussed are illustrated in Fig.
10, and Table 1 summarizes the growth rates and threshold eriteria of all three instabilities.
4.3 Resistive Instabilities in Cylindrical Geometry

At this point we translate the preceding results into the cylindrical geometry appro-

priate for an arch so that we can visualize the effects in a diffuse pinch with finite

resistivity.

In cylindrical geometry Kgs. (4.19) through (4.21) become

~ ‘ ﬁ'l"
Loy L e )R (E T @5
pm? ps fim?) m? A\ n
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um= p'
(4.58)
and
7' ﬁ -1 (UF,) (4.59)
il w1 '
where
mB,
F=< " + kB, kB, (4.60)
rs m d de]
Fl— mB[:E‘(rB¢)_k;1r_ . (4.61)

and u = r/ry, where r is defined as the singular point F = 0, i.e,, k*B = 0. All other
quantities have the same definitions. The most important difference between the plane
case and cylindrical case is G. Within Egs. (4.57) through (4.59) the real local curvature
is already taken into account. G however can contain the pressure gradient rather than
the density gradient; hence
()
dr

G= R (4.62)

An examination of Egs. (4.57) through (4.59) shows that the equilibrium magnetic
field appears only in the form k-B, where k*B = 0 corresponds to the surface at which a
perturbation with the proper pitch matches the pitch of the magnetic field lines. Thus,
when this surface does tear via the tearing mode, it will form a helical spiral along the 2
axis of the diffuse pinch.

We will now discuss the tearing mode in cylindrical geometry. The tearing mode is
the most interesting mode in the context of our flare model, as well as in the formation
of a number of quiescent features of arches and filaments. As we saw in the sheet pinch
case, a ~ 0 corresponds to the most unstable case of the tearing mode. Assuming a low-
8 configuration, we can ignore the m = 0 mode, and we find the quantity o can no
longer be made arbitrarily small, since a becomes (Furth et al., 1963)

2 2 B2
(1=
BZ

(4.63)

r=r
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We therefore expect modes with small m and large r, to be the least stable. In particular
the m = 1 mode, the kink mode in the MHD approximation, is again the least stable
mode although not the fastest growing mode. We might therefore expect some similarity
between the MHD and finite resistivity modes, which indeed exists. To appreciate this,
we must obtain the infinite conductivity equation in cylindrical coordinates. This is done
in a way analogous to that of the sheet pinch. However we will alter the resulting equa-
tion so it will have a form similar to Eq. (3.12). By introducing ¢ = /F, we obtain,
after letting S — oo, the infinite conductivity equation:

d(, o d£> [ (dF>2 Fd (HdF)]_
dr(HF o) ) T\ 0, (4.64)
where
ri(k-B)
HF?= " "1 _ = (4.65)
(k2r2 ¥ m?)
r3
H= ——— | (4.66)
(k2r2 + m2)
mBo
F=k:B=kB, + — , (4.67)
r
and

_2k%?  dp 1 o (
g ———-—————+;(krBz+mBo)

_ k22 +m?-1) + 2k2%r
(k2r2 + m2) dr

‘ (k*r®BZ - m®B2).
(k2r2+m2) (k2r2+m2)

(4.68)

A comparison of Egs. (3.7) and (3.8) with Egs. (4.64) through (4.68) shows that Eq.
(4.64) is exactly the same Euler-Lagrange equation obtained for the diffuse pinch in the
MHD approximation, except for the two additional terms H(dF/dr)2 and Fd(HdF/dr)/dr.
These two terms represent the magnetic driving energy of the tearing mode (Furth, 1963).

To see this, we write an action integral for Eq. (4.64) corresponding to marginal
stability case. This is given by

-b 2 W\ 2 2
dt ] [ <dP> Fd (Hdp)”
- 2 [dEY | .o 2|z (dF ra (HdF
W [0 HHF (dr> eeglv2|n (T - T S dr (4.69)
or
b 2 2
o [ela(2] o (7|
0
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or

W=W_+W (4.71)

’I‘ *
where W_ represents the MHD driving energy and W, represents the driving energy of
the tearing mode. The difference between the MHD kink and the resistive kink follows
from an examination of these two parts of the energy. The driving energy for hoth modes
comes from the gross configuration. The MHD kink releases its magnetic energy princi-
pally in the form of oscillatory mechanical motion by the shortening of the lines of
magnetic force, which then dissipates the azimuthal component of the magnetic field.

The resistive kink (tearing mode) is able to lower its magnetic energy content when the
topological restriction of infiuute conductivity at the singular surface is removed, which
then permits the field lines to reconnect and shorten, thereby lowering the energy of the
field. The energy is then transformed to joule heat and directed kinetic energy.

At the singular surface for a given (k, m), a helical current layer will exist across
which there exists a null in kB, permitting the current layer to tear (Fig. 11). Many
singular layers are possible corresponding to any particular pair (k, m), and these layers
are closely spaced in the arch. As we will find later, the high m and large k have the
largest growth rate, but the small m and k are the most dangerous for stability because
they involve gross displacements of the magnetic-field-plasma configuration.

As we noted earlier, one solves the infinite-conductivity equation outside of the
singular layer and the finite-resistivity equations in the singular layer. One then matches

the two sets of solutions across the resistive layer. The change in the solutions across
this layer is defined as

[ d '
A= o Wy = e, V), (4.72)

SINGULAR RACIVS -

+—— ~

MODE TWO
AIBBONS

CYLINDRICAL
GEOMETRY

Fig. 11 —-The m = 2 mode in cylindrical geometry
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.5

Fig. 12 — Magnetic field profiles for the Bessel-function
mode! (BFM)

where ) is the perturbed radial magnetic field, ¢ = B, /|B|. The finite resistivity

analysis in the vicinity of r, shows that the condition for tearing-mode instability is A" > 0,
the condition for marginal stability is A’ = 0, and the condition for stability is A’ < 0 for
the particular combination (k, m) being examined. The growth rate is then given by
(Furth et al., 1973)

2/5
(2
,
3/5 N
n
v = 0.5m2/57'4/5 (f) L da- (4.73)
m (41rp0)1/5

4.4 An Example of MHD and Resistive Instabilities
in Cylindrical Geometry

To clarify the relationship between MHD instabilities and resistive instabilities in
cylindrical geometry, an examination of the cylindrically symmetric Lundquist field is
useful (Fig. 12),

B =0, B:» =ByJ,(ar), B, = Byd,(or), (4.74)
where "o and J1 are Bessel functions and « is constant (here o is taken to be unity).
Furthermore we will permit only one reversal of B,, which implies a conducting wall
exists at r = 5.52, the second zero of B,. The position of that wall will be denoted by
Ry, .

w
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MHD theory shows that the position of the zeros of the solution to

4 2 df)
ar <HF P gt=0 (4.75)

determines the stability: i.e., if £ has a zero before reaching the singular surface, then the
particular (m, k) mode corresponding to ¢ is MHD unstable. Voslamber and Callebaut
(1962) used the MHD theory to study the stability of the Lundquist force-free field.
Using the transformation § = J/F, they found for the Bessel-function model (BFM) that
the equation for the perturbed magnetic field had no singularity, although ¢ remained
singular at k*B = 0. They also show that the equations for ¥ has solutions

V= T (-2, (- R3] ¢ mZ, (- k22 (4.76)

where
Zm(x) = aJm (x) + me(x), (4.77)

in which a and b are constants and Y is a Bessel function of the second kind. Demand-
ing that ¢ be well behaved at r = 0, Voslamber and Callebaut (1962) obtain

pr (L=kDV2J (/1 -k + md_(r/1 - k2)

=17 krd o (r) + md | (r) (4.78)

where the denominator of § is just k-B (see Eq. (4.74)). Thus for & to be stable for any
pair of values (m, k), £ must not have any zeros before the denominator vanishes. The
criteria for MHD stability reduces to examining the relative zeros of Y and F. Thus, if y
vanishes at a value of r smaller than the value for which k*B = 0, that particular (m, k)
mode is MHD unstable; if  vanishes after k-B = 0, that particular (m, k) mode is MHD
stable. For the BFM Voslamber and Callebaut (1962) show that £ has no zeros for k2 >
1 except at r = 0 and therefore that MHD instability can occur only for k2 <1.

Let us now examine the two lowest modes m = 0 and m = 1. For m = 0 we have

\/1 k2 Ji(ry/1 - kz)' (4.79)

-1 J r)

Since the first zero of J,(r) is always less than J; (r/1 - k2), ¢ has no singularity
before £ goes to zero. Hence Y has a zero at a value of r greater than the value for
which k*B = 0. We can then conclude that the m = 0 mode for the BFM is stable for
all k.
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For the m = 1 mode the singular surfaces of ¢ are obtained from
kB = Bylkrdy(r) +J,(r)) = 0, (4.80)

and the § = 0 equation is

Jn/1-k2y+ BYLED o ke -0, (4.81)

1-k

If Y now has a zero at a radius smaller than that for which k*B = 1 the (m = 1, k) mode
is unstable. This occurs for the (m = 1, k) mode between the double intersection of the
A' = 0 curve and k-B = 0 curves, as shown in Fig. 14) i.e., at k = 0.272, Rw = 3.176 and
k = -0.237, Ry, = 4.744, where Ry, is the radius of the outer conducting wall. We con-
clude that the m = 1 mode is MHD stable for RW < 3.176 and is MHD unstable for RW >
3.176 for k in the interval -0.237 < k < 0.272.

Consider now what finite-resistivity theory predicts. As noted above, it is sufficient
to determine A’ defined by Eq. (4.72) using , as determined by the MHD equations, in
order to determine stability. Gibson and Whiteman (1968) have studied the BFM by
determining A’ and found the equation for y yields for the marginal case A’ = 0 and for
the m = 0 mode

Jl(r\/l—k§)=0, (4.82)

1e.,

re 3.832 - J1.1
Vi-kE 1=k

J‘.1 being the first zero of Jl' Figure 13 from Gibson and Whiteman (1968) for the

m = 0 modes demonstrates the existence of resistive tearing modes where no MHD
instabilities exist. Considering m = 1, Gibson and Whiteman found the tearing mode
alone will occur whenever Ry, is larger than the value of r at which Y = 0 and is outside
the range of k values for which they are MHD unstable, as can be seeir .n Fig. 14.

(4.83)

As we have seen, a diffuse pinch that is MHD stable is not necessarily stable when
finite resistivity is included in the stability analysis, in addition to the tearing mode not
being limited to sheet geometries.

Thus the radial behavior of B, and B, are important for determining either MHD or
finite resistivity stability. Notice that as k¥ - 0 the behavior of F = k*B is determined
primarily by B, (if m # 0). Hence it is important that we examine the radial behavior
of B v especialfy in the limit §, <<'1 where B, will remain essentially constant and un-
perturbed. However the behavior of Bo is determined by J,, which in tumn is determined
by the radial temperature profile through the resistivity, assuming that the resistivity
behaves classically. Hence, by knowing the temperature profile of the minor radius of an
arch, one can predict the basic behavior of Ba' Furth et al. (1973) have examined the
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Fig. 13 — Stability diagram for BFM (m = 0)
{from Gibson and Whiteman, 1968)
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Fig. 14 — Stability diagram for BFM (m = 1)
(from Gibson and Whiteman, 1968)
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stability of various B, profiles for the Tokamak. In particular they considered the skin
current B@ model an«i found it to be highly unstable. In Section 8 we will examine such
a B, profile which a solar arch may exhibit.

4.5 Magnetic lslands

Since we are primarily concerned with helical perturbations of the magnetic-field-
plasma configuration, it is of interest to examine some quiescent macroscopic effects of
the resistive kink instability. These macroscopic effects, although probably not observable
during the time scale of a flare, should be observable on a longer time scale. In particular
the formation of multiple filaments which may appear as striations of the arches (like a
stranded rope) can be predicted and should be considered as strong evidence for currents
flowing along magnetic fields.

An analysis by Kadomtsev and Pogutse (1970) shows that as k*B approaches zero,
there must be a large perturbation in the current parallel to B. This perturbation in ju is
then shown to be directly related to either electron density or electron temperature and
of course to the electric field driving the current. This result enables us to limit the
types of perturbations that can act as flare precusors in current-carrying arches. In
addition such perturbations will lead to the formation of magnetic islands.

Magnetic islands arise when the nonlinearity of the tearing mode is accounted for
near the singular layer. This can be seen as follows: consider an equilibrium magnetic
field of helical symmetry, which can be specified by the stream functions I and ¥
(Johnson et al., 1958). Using the conditions that

v'B=0 (4.84)
and
vj=0, (4.85)
one finds
1 Wo  d
. 1 a[0 c c E"O )
PET W an T am o (- j,m + kr;,), (4.87)
and
Iy = (mB, + krB,:_), (4.88)
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where £ = kz - m¢. Hence we have

oy
1 0
B, = - -sg— , (4.89)
1 MWy
Bq) = e—m — +krl0 y (4.90)
B2r2 + m2 or
and
1 A,
B, = ———— \~kr — +m10 ) (4.91)
k2r2 + m? or
Notice that Eq. (4.86) is just
awo
— =rk*B =rF, (4.92)
or

where the sign of m was chosen to be negative rather than positive as we had chosen pre-
viously. Hence awo/ar = 0 will correspond to the singular layer at r = r,, if a perturba-
tion matches the pitch of the unperturbed magnetic field.

As discussed earlier, the nonlinearity of the tearing mode must be taken into account
primarily near the singular layer. Since Y, reaches an extremum at r =r_, i.e., dy,/dr
vanishes there, Y, must vary slowly in the vicinity of r = r,- Hence even a small pertur-
bation d/b can lead to a marked alterauon of the magnetic surface. In particular the
magnetic surfaces Y = constant are broken up near r = r; as shown for the m = 4 case
in Fig. 15. The breaking of magnetic surfaces is sometimes referred to as the destruction
of magnetic surfaces. Thus the tearing mode may be viewed as a form of symmetry
breaking; that is, the energy required to maintain the magnetic surfaces is released by the
tearing mode when these symmetric surfaces are broken up into lower symmetry surfaces.
This can occur only in the presence of finite resistivity. In Fig. 15 the point D corre-
sponds to Y, = extremum, and the point E is a saddle point. The surface passing through
the saddle points, called the separatrix, has a width of the order

(4.93)

or in terms of F defined by Eq. (4.92)

-1
Ar ]/m' [‘“'F )] . (4.94)
dr
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Fig. 15 — Four magnetic islands in the
m = 4 case

'This width is clearly a nonlinear function of ', the linear approximation being meaning-
ful only at large distances from the boundaries of the cell or magnetic islands. The rate
of expansion of these islands is of the order

N 47m(Ar)2

Y

(4.95)

Since d2x,'zu,ldr2 is proportional to dj,/dr, a knowledge of dj,/dr will yield information
about Ar and thus abhout ¢. Since island formation is just filamentation, a knowledge of
the filament cross section and lif»time will yield information on dj0 idr and . Hence, if
arches or filaments are observed with fiiamentation, such data should be considered as
hard evidence for a current parallel to B and resistive kink modes or tearing modes within
the arch or filaments.

4.6 Quasi-Modes

So far we have considered resistive inslabilities that are sharply localized about k*B =
0 (where k is the component of the wave vector normal to the direction of shear), so
that a perturbation can move a magnetic field line uniformly without distortion, produc-
ing no restoring force on the plasma. This thin region about k*B = 0 plays a role similar
to that of a boundary layer in hydrodynamics. However the possibility exists of an un-
stable mode localized about every value of v (in the planar current case) or r (in the
cylindrical case): and if these modes are nearly degenerate (almost equal growth rates),
the actual displacements obtained by a linear combination of normal modes may not be
very localized. Roberts and Taylor (1965) have considered such linear combinations that
are not localized and referred to them as quasi-modes. In particular Roberts and Taylor
(1965) discard the usual assumption that all perturbed quantities vary as either

fl (y)exp itk x + k,2) (4.96)
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or
f](r)oxp i(mo + kz) (4.97)
and replace this assumption with
f1 (¥, 2) explik x) (4.98)
or
fl(r,z)vxp(im(f)). (4.99)

That 1s, they do not Fourier-analyze in z, the direction of the main field. With this
charnge, modes are found which are neither localized nor dependent on a boundary layer
such as k*B = 0. Thus localization of instabilities found by Suydam (1959) and Furth
et an (1963) appears as a property not so much of the phvsical disturbances as of their
Fourter transforms.

In thewr analysis Roberts and Taylor (1965) established that the quasi-modes are
hinnted i the z direction (that of the main field). This enabled them to treat convective
plasma motion in an unsheared field placed between two conducting endplates, since the
plates simply limited the mode. This followed hecause the quasi-modes twist so as to see
an unsheared field in the frame corotating with the twisted field. Roberts and Taylor
found that because of finite resistivity the G modes {those treated by Roberts and Raylor)
could he combined coherently into nonlocal quasi-modes which could greatly enhance the
plasma loss by convection with a growth rate

2
c
y= K2 B (4.100)
aon? - Bcritical
where 3. 1 = aCf/gL, C. being the sound velocity and L being the distance between

the endplates. When § < those G modes are stabilized.

critical®
The importance of quasi-modes to a flare model is as follows: First the gravitational
resistive instability, the so called ¢ modes, limit the length of the arch, if the arch is to
he stable against coherent G modes. Thus conventional G modes can be coherently com-
hined into nonlocal quasi-modes, and the plasma lost will be greatly enhanced. In
particular Eq. (4.100) implies a/I. must be large for the arch to be stable; i.e., the curva-
ture should be small. Second, since similar arguments can be applied to the tearing mode,
one should expect tearing quasi-modes, which would lead to greatly enhanced heating
and acceleration over a larger volume than is typically assumed in current-sheet flare
models.

4.7 The Rippling Mode and the Superheating Instability

Let us now discuss the rippling mode and its relationship to the superheating insta-
bility. As pointed out earlier, the rippling mode can channel current by convection from
regions of high resistivity to low resistivity. Such behavior can result in an explosive
thermal instability via the superheating instability (Kadomtsev, 1966). The basic chain of
events is as follows: First the rippling mode convects current from regions of high
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resistivity to regions of low resistivity. The joule heating then rises and exceeds the sink
terms in the energy equation. The resistivity then drops due to electron heating, so that
the rippling mode can convect more current into the region of lower resistivity, which
again results in a higher current density and joule heating. This behavior can run away in
an explosive fashion.

Let us first consider the rippling mode. As pointed out earlier, the rippling mode
oceurs when

IV'II
5o (4.101)
F
in Eq. (4.26). Since by Eq. (4.28)
.1 di
Fooo o~ 4 (4.102)
"n-2 du

we can expect the rippling mode to occur if F > 0 and d%/du < 0. Such a situation
would occur if the temperature profile of an arch had a minimum at r = 0, the minor
radius of the arch, with temperature increasing radially outward. Normally we would
expect most of the current to flow in the higher temperature region. However the exist-
ence of a null in k*B permits the current to flow preferentially toward the singular layer,
permitting the growth of high-current-density filaments if F > 0 and dn/duy < 0 on one
side of r. Taking into account the existence of many modes satisfying k*B = 0 at various
radii, one should expect many high-current-density filaments which will grow with a
growth rate given by Eq. (4.46).

We shall briefly consider here a nu:nber of interesting properties of the rippling mode.
The rippling mode is directly related to an instability first studied - Kadomtsev (1962)
called the current convective instability. This instability required the existence of a gra-
dient in resistivity perpendicular to the magnetic field, i.e.,

B-Vn =0. (4.103)

Hoh (1964) compared the rippling mode with current convective instability and found
that for low § and strong shear the growth rate given by Eq. (4.46) is applicable. How-
ever, if a weak shear exists, Kadomtsev’s result

Ckrjzn:&
W —— (4.104)
"'sz

is applicable, where z is the direction of the main magnetic field, v is normal to the
plasma slab of thickness A, and 17;‘ = dn,/dx. Which growth rate is applicable is deter-
mined by the parameter
k_Aj
X 4
M= . 4.105
4k B, ( )
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If M > 1, kq. €¢£46) 15 applicable, and if M <. 1, Eq. (4.104) 1s applicable,  In addition
Hoh finds that thermal conduction along the field lines does not reduce the growth rate
appreciably, as was originally argued by Furth et al. (1963).

Using the constraint that the rippling mode oceurs only for
R R (1.106)
and that the e-folding time of the rippling mode is

r

— 1.107)

“‘._’.’:’»82/5

Traw ©

it 15 easy to show that the e-folding time of the rippling mode is long for long wave-
lengths, Using the tearing-mode e-folding time

Tpgy & ——— . (1.108)

which is small for long wavelengths, and comparing Thu with Ty shows

T (4.109)

Tyt
Le., the tearing mode has a shorter e-folding time for long wavelengths if the conditions
for instability are satisfied for both instabilities. One should then expect the tearing
mode to contribute to the growth of the rippling mode, since the tearing mode forms
long-wavelength magnetic islands which aid in convecting the current into filaments of
smaller cross section. Such mixing of the rippling and tearing modes has been used as an
explanation of the helical current streamers formed in stabilized diffuse pinches (Furth
ot al., 1963).

The superheating instability is really an effect that occeurs when one examines the
resistive instabilities of Furth et al. (1963) by using an energy equation rather than Eq.
(1.11). The effect of joule heating is then self-consistently included. In fact one cun
obtain the complete dispersion relation for the current convective instability of Kadomtsev,
which ignores the effect of perturbing the current in the energy equation, and the super-
heating instability (Kadomtsev, 1966}, which ignores the effect of the resistivity gradient
required by the rippling mode and the current convective instability.  The complete dis-
persion relation is \

o

i . 9 .
(W +iwr, - wiw+ ix k;

iy RS+ +
- it ’ ’
x A w, uq)

fe ‘1& 0 v l‘\' Vp
+2wp v — 0% tiwy ) ——— 0, (1.1100
Y4 A ' k
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where
2 . ,2,2
wy =y kn .
kZe2
ll = .
s 4moy,
b= 2 dpmd
r 3n0 dTO
4nj, dn Jg
Ll = R
P BO(‘ dx
and
/ :2 )
.- 2 ( i dtnaog
T 3\nyT,0,/din Ty

However here we will review only the derivation of the dispersion relation for the super-
heating instability.

Physically we can understand the superheating instability using rather simple argu
ments. Assume a current j, flows parallel to the main magnetic field B,. Suppose
further one perturbs the temperature of the current-carrying plasma on a scale for which
thermal conductivity can be neglected. One then finds that the current density will grow
when the joule heating exceeds the radiative power loss. The basic physical notion of
the superheating instability is then as follows: since the electrical conductivity varies with
temperature as T3/2, and the current density is directly proportional to the conductivity,
one can argue that a temperature increase will result in an increased electrical conductivity,
an increase in current density, and therefore, joule heating. This effect will cycle in a
runaway fashion, so that the current grows at the expense of the external perturbing
thermal input.

One may also properly view this mechanism as a form of electron-current runaway,
which can occur only if there are no mechanisms to limit the temperature rise which is
effectively due to joule heating. For, if these temperature-limiting mechanisms are lacking,
or if the joule heating exceeds the limiting mechanism, the electron temperature will con-
tinue to increase and the drift velocity will follow the temperature rise during subsequent
times. Since the critical electric field for runaway decreases with temperature, the Dreicer
regime can eventually be reached, und complete runaway could occur. Coppi and Fried-
land (1971) have considered a similar instability. For completeness, let us follow some
of their arguments before deriving the superheating dispersion relation.
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As discussed by Coppr and Friedland (1971), the electron energy transfer equation is

an AT, KD moo :
rY T’—" ) _r’— - ’;;“‘ IH",“ ll’ - l') - l'dn I"‘_, (1.111 ]
~ i

where 115 the electron-ion collision frequency. T, and T, are the electron 1on tempera:
tures, and ry is the rate of thermal energy loss by diffusion and radiation. Here we
identify £ with the induced electric field that drives the toroidal currents of the arch.
In equilibrium Eq. (4.111) reduces to

E?
z me
AT N S 411
o7 Weig m, e = Tigh * YT (

where the subscript zero denotes the equilibrium values. Coppi and Friedland used Eq.
{1.112) in a temperature regime where vynTe, is small in comparison to the Pery term.
Hence the electrons heat if

(3T 172
Ez > v, m.e —l—n—l— (4.113)
or
'3m, 172
hz>(-é—n7i E,. (1.114)
where

VoMo ty,

Epy = (4.115)

I'.'” being the Dreicer electric field for runaway at the temperature T‘ and vy, being the
electron thermal velocity. Thus, if the induced electrie field driving the current satisfies
Faq. (4.113) one should expect runaway.

Lot us now follow Kadomtsev (1966) and derive the dispersion relation for the
superheating instability. We proceed by using the equations

i X

g-1_vxB (4.116)
() [

’3 b Vo) - 0, (4.117)




-

NRL REPORT R036

nm, — = (4.118)
c
3 ndT i
- —— Y —-Q. 11¢
2 dt v+ o ? (4.119)
and
i b
V(v X E)y=- L (4.120)
c At

while assuming a uniform magnetic field 8 = Be, along which flows a current j = Joe.
which is weak enough that its own field satisfies B, <L BO‘ Furthermore we assume
that the ¢ of the plasma is such that 3 <<{ 1. Assuming that all perturbed quantities vary
as exp(- (wt + ik*x), we have

1
- iwv, = (i, X B, (4.121)
771"7('
1 i lg dtno, T
E,=- - v, XBy+ — - 2 2 1 (4.122)
C 6 Uy dtnTy T,
) L.
2. 83 d 3o (dnog\Ty 4 g,
ciwrx k2 4y R2+ 2 — 4+ )= = = .
OTXETXECT 9 o gy T g n0<dcn Ty)Ty 3 ngTeug @ W12%)
and
. dme
R2E, - (k-E k=i —= j . (4.124)
¢

Using Eq. (4.121) to eliminate v, from Eq. (4.122) and substituting Eq. (4.122) for E
into Eq. (4.124),we obtain

iwe? dtn Gy T1

2 .
k.j F
4oy ! 0 d¢n T, T,

(w2 +iwe

k21amoy - w2)j, = (4.125)
Using Eq. (4.125) in Eq. (4.123) to eliminate j, then leads to the dispersion relation

k2

(w?+ iwv, - w'f‘)(w + t)(,,k“2 +ix, k[2 +iy, + ivq) + Zwvsuq ;% =0, (4.126)
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where
w?\ = klfvl
b 2 d@
r 3n0 d'I‘O
b= c2p?
§ ing,
and
2 jg dtna,
Vo= o ——— .
q 3n0 T()"o d{n T0

We would like to examine the effect of short-wavelength perturbations, for which »,
is much greater than all other frequencies. Hence v, — oo yields

) (k2 - kZ)
L‘J=—~i)(“k“2--i)<lkl -iur-ivq 7 R (4.128)

where X, is the thermal conductivity parallel to B and x, is the thermal conductivity
perpendicular to B, Following Kadomtsev (1966), we note that instability can occur
when v is either negative or positive. The first case corresponds usually to classical
resistiviiy and results in the formation of current filaments of higher conductivity, greatly
elongated along the field lines. The :econd case corresponds to situations in which the
electrical conductivity may be anomalous and decreases with temperature. This case
appears as alternating layers of high and low conductivity similar to striations in a glow
discharge. The first case is physically the most interesting, because it can occur only if
the perturbations are highly elongated along the magnetic field, i.e., k, = 0. Hence,
neglecting conduction perpendicular to B, we have

W= - i, (4.129)

Thus, if v, > v,, instability will occur; i.e.,

2
¥i dingo
0 0> de

— e 4.
Toop dn T, ~ dT, ' (4130

where
3m

e
Q- Prad + m. 'wei(Te - Ti)'
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Comparing Eq. (4.130) and Eq. (4.112), we see that they are physically equivalent,
as previously argued. However in deriving Eq. (4.130) we have determined under what
conditions Eq. (4.112) is valid, i.e., only for long-wavelength perturbations, in addition to
obtaining a growth rate for the instability, i.e.,

3 2
vs SngT, /10 4oy (4.131)
g dnTy /)’

Note that vy is small if the current density is small, but hecomes large if j, is large.

How d &n UO/d (n T0 behaves will depend on whether the resistivity is anomalous
or classical. If the resistivity is classical, d ¢n OO/d ¢n TO contributes a factor of 3/2 to
the denominator of Eq. (4.131). It is important to emphasize that as the temperature
grows in the current filaments, the electric-field magnitude necessary for runaway drops.
Hence, if a current-carrying arch has a long lifetime compared to the growth time of the
superheating instability and of the rippling mode or current convective instability, these
modes will undoubtedly occur. This would especially be the case if the source of the
current within the photosphere or convection zone resulted in a monotonically increasing
current, such as the gradual twisting of the feet of an arch would cause. A number of
possible effects may occur as the current within the filaments of the arch grow. The cur-
rent density may increase until it becomes either MHD unstable or resistively unstable, at
which time these filaments will explode in a variety of ways. Or the filaments may
remain MHD stable but become unstable to various electrostatic instabilities. However
we will defer discussion of these various possibilities until Sections 6, 7, and 8, where we
will discuss the flare model in detail.

5.  INSTABILITIES IN MORE COMPLEX MAGNETIC TOPOLOGIES
5.1 Introduction

In this section we will examine how the more complex magnetic topology of an
arch or filament may alter the application of the results obtained in Sections 3 and 4.
The two most obvious differences between a cylindrically symmetric topology and an
arch topology is that the arch has global curvature as well as local curvature and that the
toroidal component of the magnetic field B, has maxima at the feet of the arch, with
By monotonically decreasing with altitude in either leg of the arch. Hence we have a
diffuse pinch, which is basically a magnetic mirror, within which a current flows, and
which is bent into a half torus. Such a magnetic topology will cause the pitch of the
magnetic field to vary, not only with minor radius as in the cylindrically symmetric case
hut also with altitude. We then must show that the curvature of the arch will not affect
our analysis to any great degree and that the behavior of the pitch of the magnetic field
is also not of overwhelming importance.

The effect of global curvature on the growth rate of the MHD instabilities was con-

sidered in Section 3, and, as argued by Furth et al. (1973), similar arguments apply for
resistive instahilities. Hence we may conclude that curvature will not significantly alter
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the results obtained in Sections 3 and 4 if the modes we consider have sufficiently large
growth rates. However there are effects due to curvature that alter the location of sur-
faces of constant magnetic flux. In particular the curvature has a tendency to outwardly
displace the flux surfaces, in the direction of the convex plasma-magnetic field interface
of the arch, by an amount of the order r/R (Moroyov and Solov’ev, 1966). This dis-
placement can cause various m modes to overlap.

To examine the effect of the variation of magnetic pitch with altitude and minor
radius, it is best to discuss a trivial example so as to illustrate the physical principles
involved. Assume that a magnetic mirror exists between two conducting endplates (Fig.
16a), und suppose a perturbation of the form

vy ={(0, €rw, 0) (5.1)

occurs due to both endplates rotating. This will cause the fluid to rotate about the axis
of symmetry with an angular frequency, w, imparted to the fluid element about the axis
(¢ is a dimensionless parameter which can be made arbitrarily small to insure the condi-
tion that v. be a small perturbation). The perturbation on the magnetic field in the
presence o} this perturbation is just

08, 2
a0~V X (v XBg) - = V(ng¥ XB, -,V X By). (5.2)

As discussed in Sections 3 and 4, an MHD or resistive MHD instability will occur
when k*B = 0, which in general results when one or more components of v, X B vanishes.
Let us then examine when (v, X B) vanishes for the perturbation given by }-Jq. (5.1) and
a magnetic mirror configuration given by

j\fjj (a)

Br Ve
Er
\QRZ val/"g

Fig. 16 - Twisting magnetic mirror between two
conducting endplates
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B (1 1 aw)
B, = (B,.0. B,) (7 ARl B (5.3)

where y is the appropriate stream function. We find that (v, X B) vanishes only when
w = wly). Hence w is constant over the surfaces of ¢, and since ¥ = constant repre-
sents the surfaces of constant magnetic flux, we find the angular perturbation is constant
on these surfaces if w = wW(Y). If w # w(Y), then v, X BO) # 0 in general and the
lines of force will be distorted by the perturbation. Thus, when (v, X BO) = 0, the lines
of forces are not distorted due to the fluid perturbation; this does not permit the
magnetic field to produce a restoring force to counteract the perturbation, and the per-
turbation can grow. However the important point here is that B0 is sheared and is a
function of both r and z, not just of r as in the cases discussed in Sections 3 and 4.
Indeed, if the perturbation v, were incompressible, i.e., Vv, = 0, then v, may be de-
rived from a stream function,

r
TS XU (5.4)

X being the stream function of the perturbation. Writing
r
r2

we see that v, X BO vanishes identically if x = x(y), that is, if the surfaces of the per-
turbation match the y surfaces of the magnetic field. Such a statement is equivalent to
the statement that the pitch of the perturhation matches the pitch of the magnetic field,
which was our criteria for instability in the cylindrically symmetric cases examined in
Sections 3 and 4.

5.2 An Example of Three-Dimensional Magnetic Configurations

Let us now examine a realistic magnetic configuration that may approximate the
magnetic field in a filament or an arch with a small inverse aspect ratio. To do this we
must first obtain solutions for a magnetic field made up of a mirror field and the field
due to a current flowing along the symmetry axis of the mirror. To obtain such solutions,
we assume helical symmetry. Using Egs. (4.89) through (4.91), we have

_1ay
B, = il TR (5.6)
. \
- 1 (m aw + krl), (5.7)
k2r2 + m? ar
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and
1 g3V
R2r2 + m? ar
where
d
- 2 B, + kB, (5.9)
c
1= i (mB, +krB,), (5.10)
and
£ =kz-mo. (5.11)

We now impose the condition that the magnetic field and plasma configuration is
force free. Imposing the force-free condition eliminates only pressure-driven instabilities
from the analysis, since force-free equilibrium requires that

] B2

vanish; and, as should be clear from Section 3 and 4, only j, -driven instabilities are of
importance to the instabilities discussed here. Imposing the force-free condition implies
j=a(r)B (5.13)
and
B:va=0. (5.14)

It follows then that /, the stream function of j introduced in Section 4, is related to o(r)
and { through

w dy’
= , 5.15
I / o (5.15)
or
I = I(Y). (5.16)

Thus we can satisfy Egs. (5.6) through (5.8) by an appropriate choice of /() which
satisfies our houndary conditions.
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We now need only to find y. We can do this by using a solution for a magnetic-
mirror field given by

B.(r.z) = - aBOJI(kr) sin kz (5.17)
and
Bz(r,z)=BO(1 —oalo(kr) cos kz), (5.18)

where « is related to the mirror ratio by

_(l+a)
M (1-a)

(5.19)

and where k = 27/l., L being the full length of the mirror, with the ends of the mirrors
located at z = + L/2. Equations (5.17) and (5.18) satisfy

1 9 aB,
~ = (B)+ 5= =0, (5.20)
with
19y
B, = T s (5.21)
and
_ 199
Bz-_r_ Eral (5.22)
in which
V = (aByyJ, (y) cos x - Byy?/2)/k? (5.23)
where y = kr and x = kz.
Since VB = 0 for Egs. (5.20) through (5.23), then
oB
1 4 t
- — 4+ —
= 3 (rB,) T (5.24)
should also be satisfied by letting kz — ¢, defined by Eq. (5.11), and
Bt = - mBQ, +krB,. (5.25)
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Fquation (5.24) is then satisfied by

1y
B 1 5 (5.26)
and
1 0y
B, =- = =2 . (5.27)
r ar
Using Kq. (5.23) and letting kz — £ and § ~ yk, we find that
¥ = (aByyd, (v) cos £ - Byy?/2)/k (5.28)

satisfies Pgs. (5.26) and (5.27) and represents the magnetic flux through a helical ribbon.
For vacuum fields it follows from V*j = O that ! is a constant. Taking this constant to
be zero and setting m = 0, we obtain the mirror solutions (5.17) and (5.18).

l-lxami‘nation of Eq. (5.28) shows that as y —~ 0 (r ~ 0), v — 0 and that as y = oo,
v - B3vEi2k. If we let [ = [(Y), Eq. (5.7) yields

B, = ——— [[aByyJy(y) cosk - Boy] + v}, (5.29)

] ,\’2 +m
We see that asy = 0, B, = 0: but as y = oo, we have
1
B, ~ = [-mByy + yl(y »> o)}, (5.30)
Y

so that to satisfy the boundary condition that B, vanish at r = 0 and r = o, [ can
approach a constant at worst. Preferring a faster falloff, a number of choices for | are

ky
I'=mB, + B, 0xp<~B—0>, (5.31)
1= mB, mm(ﬂ’) (5.32)

BO

and
B
1= % (5.33)
(A + By

where n = 0, 1, 2 etc.
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Eqs. (5.6) through (5.9) exhibit the following structure. First we note from Eq.
(5.9) that

»
- Y~ _mB. + kB = rk*B. (5.32)
ar & Z

Since B*Vy = 0, we know the magnetic field lines lie on surfaces of constant . Further,
using ¢ = krBB_/B_, we have from Eq. (5.31) that ¢ = m on those surfaces where dy/dr =
0: that is, we are on surfaces where £ = constant and the magnitude of B, represents the
magnetic field parallel to a helix with a pitch

au

<
S
m‘sw

s (5.33)

=
N
N

which is both a function of r and £.

The solution given by Eq. (5.28) does not have any surfaces where ¢ = m if a < 1,
which it must. However a more general solution does exist, i.e.,

AN - {('OS K’E} 2
) SV -B

=0
g= o , (5.28)
/4

where ¢ = (0, 1, 2, ete. and the prime denotes a derivative with respect to y. This solution
definitely has resonant solutions where g = m.

[et us summarize our discussion. We have endeavored to show by illustrations that
even though in a real arch or filament the pitch of the magnetic field is a general function ‘
of r, it is possible to have magnetic surfaces which can still be resonant with perturbations
which result in a component or components of v, X B vanishing. What we have failed to
do is to prove the actual existence of such magnetic surfaces in solar arches, the existence
of such surfaces being a crucia! assumption of our discussion. Such surfaces are known
to exist only in cases with high symmetry, such as cylindrical or helical symmetry. How
much the magnetic fields actually depart from these surfaces in more realistic cases is
difficult to estimate without more detailed information about the actual arches or fila-
ments.  However such departures can lead to the appearance of many new effects.

5.3 Nonlinear Resonant Phenomena

As pointed out in Section 4, the breakup of magnetic surfaces is in general a result
of a symmetry-hreaking perturbation, such as the tearing mode. There are in principle
two kinds of perturbations: magnetic perturbations and those that result from a lack of
high symmetry. As shown in Section 4, magnetic perturbations generally result from

perturbations in temperature, density, or electric fields through the current density.
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Symmetry breaking due to a lack of high symmetry would result, e.g., from the 'facgt that

the toroidal component of the magnetic field in an arch is a function of altitude and the
strength of Lic magnetic field may differ at either foot of an arch.

To illustrate more clearly the breaking of symmetry, consider a cylindrically sym-
metric diffuse pinch in which a helically symmetric perturbation exists. Such a system
still possesses magnetic surfaces, since the system possesses helical symmetry defined

through the helical variables r and £. "For'a pure (m, k) perturbation we have the stream
function

Wi §) = Yolr) +e, b, (Psing . (5.34)

Since V, vanishes on the g = m surfaces, we can still expect magnetic islands to form
about this surface. Suppose further that more than one perturbation exists in the sys-
tem, so that Eq. (5.34) becomes

U(r &) = Yo + e, ¥, (N sink, +e Y sink, .. (5.35)

If the pitches of these two perturbations do not match (i.e., k/m = k/m’), the perturba-
tions have broken the symmetry of the system.

Magnetic islands will still occur within the system at the resonant surfaces ¢ = m and
g = m'. These surfaces are defined as primary resonances. Further, secondary resonances
occur which cause smaller magnetic islands. These are caused by mode-coupling“of the
perturbations present. This mode-coupling occurs because linear modes specified by (m,
k) generate harmonics which interact with and modify each other. If the perturbations
are sufficiently large, then the individual island structures will interact strongly, so that
the phenomena referred to as overlapping of resonances occurs (Rosenbluth et al., 1966).
The overlapping of such resonances can lead to a rapid destruction of the flux surfaces
(Rosenbluth, et al., 1966) and thus the release of magnetically stored energy. It is with-
in these regions of overlapping resonances that the magnetic surfaces are said to Be
destroyed by reconnection and the magnetic field lines behave in a stochastic matter. Let
us consider fcr example how perturbations due to the tearing mode will evolve. .

Suppose a number of helical perturbations resulting from the tearing mode have
occurred in a >ylindrically symmetric system, all with different pitches. These perturba-
tions will resuit in primary resonances at the resonant surfaces ¢ = m and secondary
resonances due to the interaction between smaller islands. As the perturbation amplitudes
are increased, the secondary resonances will begin to interact, because they are more
localized These interactions will cause stochastic wandering of the field lines around =
X-confi, « neutral point formed by the small-island separatrices. If the amplitudes of
the pertu.bations are increased further, the primary resonances will begin to interact with
one another, leading to stochastic behavior within a much larger volume near the X-
configured neutral point formed by larger islands. Such behavior will lead to greater
magnetic energy thermalization over larger volumes by reconnection,

Because these effects could be of great importance in understanding the dynamics of
the solar flare, and because onset of these effects strongly depend on the amplitude of
the perturbation, which, as we will see later, is highly suggestive in explaining the differ-
ence between the thermal and nonthermal flare, we will here attempt to clarify the
physics involved.
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The first basic point to what will follow is that the effects we will discuss are
amplitude dependent. Henee the system of equations are necessarily nonlinear. The
second basic paint is that when the amplitude of a perturbation does reach a certain
threshold, the system will show a sharp transition from nonlinear oscillatory hehavior to
stochastic hehavior, requiring statistical mechanics to deseribe the motion.

Because a nonlinear oscillator’s frequency is amplitude dependent. a nonlinear
oscillator’s frequency varies when a resonant perturbation acts on it, due to the frequency
dependence on the dnving-force amplitude.  Thus the amplitude and frequency of the
oscillator will undergo beating over a finite range Aw and Ab, where w is the frequency
of the oscillator and b is the amplitude of driving perturbation. Let us suppose a driving
perturbation F(f) contains many harmonics, i.e..

Fitty =N "b, cos n§t. (5.36)

n

and that the frequency spacing (§25) between each harmonic is such that the beating
mnterval Aw contains many of these harmonics. Then how will the oscillator behave?

The answer is not what one would expect. It is found that the oscillator acts stochasti-
cally and that the energy of the oscillator will grow, on the average, proportionally to
time.  This phenomenon is called the stochastic instability of nonlinear oscillations and is
a topic relatively new and lLittle known. Because of this we will review the basics involved
without delving deeply into the mathematics nor into the fundamental concepts of ergodic
theory with which the phenomenon is closely allied. The reader should consult the
literature cited, particularly Zaslavskii and Chirikov (1972), for a more detailed presenta-
tion and examples of applications.

In MHD theory magnetic surfaces are conserved, so that there should exist adibatic
invariants. To see this, we convert the field-line equations

dr_rdo _ d:

= = 5.37
B, B, B (5:37)
it canonical form. We have
dr .
n, = B, (5.38)
and
1o B,
3, 522 (5.39)
s odz r
Introducing & - kz - mo, we have from Eq. (5.26) and Eq. (5.27)
1y
- = 5.40
B, rook (5.40)
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and

1 ol
B - [

R roor
where A0 /dr

mB, - krB,. Usimg “and p
Eqs. (5.40) and (5.11) become

re /2, we find dods> o (k- dE N

g, Q2
< dz af
and
p e

dz dp
Defining dz/dt = 53,, we obtain the canonical equations

dp

oy
dt ok
and
dt _ ay
dt

where the stream function o is the Hamiltonian, p is the conjugate coordinate, a
the conjugate momentum.

The adiabatic invanants are just

-~ 2
re d¢
J =
5
and
dan oH,
dt «

A
where H s related to by a canonical transformation, J is the flux-tube area,

-

the frequency of rotation of the flux line around the flux tube and is expressed
number of flus line rotations per rotation about the ¢ axis.

Equations (5.44) and (5.45) can be treated as equations of a nonlinear os¢
singular points at dy/df ~ 0 and dyldr

0,10, B, = 0and k-B = 0.
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To determine o, we note that normally

.0 B,
bz rB,

where 8¢ is the change in the azimuthal coordinate when the angle £ changes by
Hence, since we have df/dt = w.

di b0 bt dz

«“- dr NE Hz dt

which @ves, using £ = k2 - m@ and 60 = 2n when 8¢ = 2n,

At resonant surfaces w' = k/m, from mB_ /r - kB, = 0, so that « ~ 0 there. Th
g = 2nrB, /LB, and k = 27n/l.. we have

nB, m
w= — ~—-)=nw”.
r n |

Proceeding, we assume a perturbation exists which destroys the adiabatic in
of the field, e.g.. the tearing mode, so that the equations of motion in terms of
angle variables becomes (Zaslavskii and Chirikov, 1972)

. oV
J =~ W (J. U,'."\

av
0= W)y + ¢ T (J, 0, o).

and
W0, 0) = H N + VIS0, 0),
where ¢ <7 1, ¢ characterizes the perturbation which has a frequency ¢ = §2t, a

the perturbation. The perturbation is assumed to be periodic in # and n, n bein
harmonic number of 1. In general the perturbation « V can be expanded into a

l —

Vied, 0,00 -

«

B , H D+ nl) L -i(\o+ni)
> [Vi o) $V (e oy
U

~

£

where V_ " \v’: e 1= wt, and ¢ = 2.

fop
o

oo

b
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A resonance (4 ny, n being the harmonie of the oscillations of the os
being the harmoric of the external perturbation, is determmed hy

El+ne = 0,

The accuracy to which this equality must be satisfied is determined by the
Aw of the resonance,

The simplest case one can examine is that of single resonance, e, o
these circumstances, only two real terms remain in V', corresponding to o -
The 5 - # term corresponds to the resonance, and o + U correspands to a |
quency perturbation.  If the width of the resonance is small enough, then
resonance can oceur for a given set of imtial conditions.  If we include anj
resonance term in V., we can introduce the resonance phase 1y . Vot ond
verts Egs. (5.52) and (5.53) into

J-enV osin
tn L
and

. ;”1 "
‘l\” A+ nwl N ren T vos by e

i),

At resonance J = Joand (02 4 ngedy - 00 Heneel expanding ooty abou

dViyng
dd

dw
n, = (AN +n
Long 0 dqJ J 0

(i)

{J Y cos Py ony

where AJ = - J,.

We can derive Eqgs. (5.56) and (5.58) at resonance from a so-called w
tontan which s nonlinear and conservative,

dw|  (AN?

n, — +tn
0 4 J 2
r

I, 0V gng pheos by

using
(I.n‘ = _"_._(.Ii‘
Yoo~ Had)
an¢d
At
. u
(A)) = - ———
HPCGng)
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) SADOLE

SEPARATRIX

Fig. 17 -~ Phase space diagram for a
nonlinear oscillator

In Fig. 17 we plot the phase space for this Hamiltonian. From the Hamiltonian it is
trivial to determine the maximum width of the nonlinear resonance in Aquo,,o and AJ

Abgp, = 2 (5.62)
and
/EVQ
AJ =4 °"° , (5.63)
dJ

which corresponds to tiic length and width of a separatrix envelope. The resonance width
Aw is obtained using Eq. (5.63) and Aw = w'AJ:

Vi

tng (5.64)

Aw=4 5-1—(2'

r

We can use these results immediately to obtain the width of a resonance at k*B = 0,
due to a perturhation resulting from the tearing mode. Using Eq. (5.46) we obtain

, (5.65)

where r_ is the radius of the singular layer. We find from Eq. (5.51)

B
dw| _ 72 dgq (5.66)
dr w T dari,.,
Equating ¢ Vg, and y' and noting that from Section 4
2 d
bl _p, 99 (5.67)
d"2 , dr
8
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we obtain from Eq. (1£.93)

o\ oY da)' (5.68
B, dr) it
Since AJ = rAr and
dw| i dq
dJ I, 7'2 dr rorg
it follows from Eq. t5.64) that
A
Ar - 4./1,'/' (B,‘ %” {5.69)
VAN

A comparison of Eq. (5.68) and Eq. (5.69) shows that they are identical except for
a factor of 4 for the island width, one being obtained using straightforward perturbation
theory and the other being obtained from nonlinear resonance arguments We have also
found that there is a substantially large width Aw over which resonance can occur which
is related to the island width. All of this has a rather straightforward interpretation.
First. because of the nonlinearity any change in the amplitude of the oscillations during
resonance will lead to a shift in frequency, which then departs from the resonance value.
This departure in frequency then stops the change in amplitude. However this frequency
departure leads to a departure from resonance, which in turn will cause the amplitude
of the oscillations to begin to vary in the opposite direction, so that the frequency of
oscillation again returns to the resonance value, ete. This behavior is just what one would
expect from a nonlinear system, since nonlinear systems will generally evolve into a state
of marginal stability; in this case marginal stability about the resonance frequency.

The most interesting effects occur when two resonances are near one another. It is
this interaction of nonlinear resonances that is of fundamental importance. Geometrically
one can imagine two resonances separated by a frequency shift A = wy — W, where w,
and w, correspond to the frequencies of the two resonances. Hence when (Awyy, is of
the order A, we can expect overlap of these resonances. Thus we can define the
parameter

(Aw)y,
-—

S

(5.70)

which & a measure of overlap. When N <7< 1, the nonlinear resonances are well isolated;
but if v == 1, overlap of nonlinear resonances will occur. It is during overlap that the
pattern of motion will change abruptly and substantially.

Figure 18 depicts what would occur if one nonlinear resonance, due to a tearing
mode, overlapped with another. The most important point for flare theory is that many
more reconnections can oceur because of the abrupt and substantial increase in
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Ty ) -

TN n-f

(b) Weak nonlinear overlap of resonances. (Note the increase in
the number of neutral points.)

Fig. 18  Effect of resonances overlapping

X-configured neutral points. Hence, during overlap, reconnection is extremely rapid and
sudden, much more so than what would . cur from two isolated resonances. In addition
the diffusion step sizes are increased across the magnetic field, making plasma transport
unusually rapid. We see however that for islands to overlap, the strength of the perturba-
tion must exceed some threshold. Hence nonlinear resonance overlap is an amplitude-
dependent instability.

An interesting result that follows from overlap is that increasing the magnetic srear
1s a destabilizing factor {(Finn, 1975). To see this, one first converts Ar, the width of the
resonance istands, to the form Ar = [e/(du/dr)] ”2, where y = B, /rB, and dp/dr is the
shear. The distance hetween resonant surfaces d is inversely proportional to the shear;
thus the condition for overlap & > 1 corresponds to Ar =d or ¢ > (du/dr)']. This
implies that the larger the shear of the magnetic field, the smaller the perturbation
amplitude required for overlap.

[et us now back up and address ourselves to the question of stochastic behavior.
As we have seen, the periodic nature of a perturbation leads to the possibility of
resonances at very high harmonics between the perturbed motion and unperturbed
motion. If w(J) is sufficiently nonlinear, it is possible that the normal isolated non-
linear resonance instability (e.g., the tearing mode at one singular layer and its associated
destruction of magnetic surfaces) will not develop, due to a rapid departure of w from
resonance. However in this situation an even more dangerous instability sets in: the
overlap of resonances. This overlap manifests itself in the virtually random behavior of
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the rnase pomt, in our case the magnetie field line, in the JO plane, and it is found that
the behavior of the distnbution function for the field lines is described by a Fokker-
Manck type of equation (Rosenbluth et al., 1966; Filonenko et al., 1967; Zaslavskii and
Chirtkov, 1972). To see this, we introduce the Liouville equation

If B! 3 /dJ
J)_t + 30 (wf) + Ii(‘d_t‘ f>-(). (5.71)

where [ 7 flw, J, t) is constant along a field line. By use of Egs. (5.46) and (5.47) this
becomes

of af  _ ovhH
3t + w(J) ’:m = ( -(.)—J— ) (5.72)

where ¢ V' is the perturbation. This equation can be transformed by standard techniques
mvolving Fourier and Laplace trunsforms (Rosenbluth et al., 1966; Filonenko et al., 1967)
into an equation that has the form

OF )
= — Re ~(w-LS2)
ar - %€ 5y Re 2. [Vnz,‘ég—n,(o)e ]5,.2-"1_1
nlan
+ 8me? 'lZ 1V, (1800 - €)= 1V, (IF (5.73)
af &g Tt ag e

where F is related to f through the above-mentioned transforms. However the important
thing to notice is that if the term proportional to € is zero, i.e., the term that preserves
phase memory, the equation takes the form of a Fokker-Planck equation:

aF 2 0\ , )

o =8 = 2_{ Ve Ib(w - 092 = (IV,¢lF). (5.74)
n,

As has been discussed, because of the nonlinear behavior of w when passing through

resonance, the amplitude changes and causes w to change so that it will depart from the
resonance value of w = w,. Hence two possihilities occur: we find either

Ar <<d (5.75)

or

Ar>>d. (5.76)

The motion of the field lines is then described as follows: The neighboring resonances
are well separated from one another. The field lines are trapped in an effective potential
well near the resonance value, with an accuracy of order €. Hence the magnetic surfaces
are well behaved within the separatrix. However, when Ar >> d, the system changes
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radically.  Here there is no capture of field lines, a field line may fall within any
resonance, and the representative pomnt of the field line may move about in a stochastic
manner, so that the system loses all phase memory and the first term in Eq. (5.73)
vanishes.  Hence the behavior of the field lines obeys a Fokker-Planck equation and
appears stochastic.  The reader should consult the references cited for a more complete
and rigorous analysis.

In summary:

® The concept of nonlinear resonance is of fundamental importance during field line
reconnection.

® Overlap of resonances (separatrices) is the condition for the appearance of
stochastic mstability.

® Overlap causes an amplitude-dependent instability.
® Strong magnetic shear can reduce stahility, contrary to what MHD theory predicts.

We will make use of these results throughout the flare model to he discussed.

6. BASIC FLARE MECHANISM
6.1 Introduction

The purpose of this section is to establish whether a current-carrying arch in the
solar atmosphere, subject to the MHD kink and resistive kink modes discussed in Sections
3 and 4. can release the explosive energ, (typically of the order 102% ergs/s for a small
flare) associated with a flare. We establish this by determining the location of the
current-carrying arches that we expect will cause the classically defined flare, 1.0., those
flares that result in intense chromospheric heating. This allows us to assume reasonable
magnitudes for various parameters. such as polowdal field strengths in the arches. With
the location of these arches determined, we then show that the occurrence of MHD kink
and resistive kink instabilities in arches can explan the energy release of a flare.

6.2 Location of Arches That Cause Flares

To determine precisely the location of arches that flare is difficult without a sub-
stantiad improvement in our empirical knowledge of the physical conditions within these
arches. However we can heuristically determine where we expect the arches that do flare
to exist. Hence what follows should be considered in part as predictions of the model.

We begin by recognizing that the location of a particular kind of flare (e.g., impul-
sive rise versus gradual rise) is undoubtedly related to the rate of energy released, which
in turn is determined by the magnitudes and gradients of quantities like the magnetic
field and density, which are in turn determined by the arches’ size and location. Keeping
this in mind, one can represent the rate at which magnetic energy is thermalized by the
tearing mode by
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2
de N 7",) AV

;E in

, (6.1}

where AV is the incremental volume along the arch in which the tearing mode occurs.
The poloidal component of B, occurs in Eq. (6.1) because it is the principal component
of field dissipated. Smee y and B, are in general functions of position in the arch, de/dt
will differ at different locations along the arch. Further, since v and 1}” are strongly
influenced by both the magnitudes and gradients of various parameters, we should expect
71?}"; /47 to be greatest where the magnitudes and gradients of these parameters maximize
it. Henee we should expect the location of instability to appear well localized within the
arch: 1.e., the ineremental volume AV should be such that AV/V << 1, where V is the
total arch volume. This is what is observed (Widing and Cheng, 1975; Cheng and Widing,
1975). Indeed, since observationally AV is small, 783/47( must necessarily be large, which
implies steep gradients and large B,,, which in tumn clearly implies the arches must exist
low in the solar atmosphere if they are to explain solar flares.

If we were to require the bulk current to he electrostatically unstable at flare onset,
we again would be forced to require the arches to be low lying, since the field gradients
would then have to be of the order of a skin depth, if the current is to be electrostatically
unstable.

An alternate means of determining which arches will flare is to ask about the global
stabiiity of the arch.  As discussed in Section 2, arches are observed to exist prior to their
flaring and appear stable. If they are to be MHD stable, they must be stable against the
global Kink mode prior to flaring. This requires the safety factor ¢, defined in Section 3,
to satisfy g 22> 1 at every point in the arch. To see this, we note that hy flux conserva-
tion Ii',-or'f) = constant and By, ~ 2l/crg, where [ is the total toroidal current and assumed
here to be constant.  Hence, since ¢ = ZaryB, /Bp L, we find g approximately inde-
pendent of position along the current path (In Appendix A we examine this point more
critically.y  Two things are clearly represented in ¢ >> 1: the larger is 2nr/L, the
wreater is g, and the larger is the ratio H',‘/Bp. the greater is q. These requirements how-
ever can be satisfied in small or large arches for suitable parameter regions. Thus, to
continue our argument, we must turn again to flare energy requirements.

since By, must be relatively large to explain the energy release from an arch, we must
also nave By large for a fixed 27r/LL if g is to remain above 1. However, to obtain a
large By requires that we descend in altitude, since By increases with decreasing altitude.
But in so doing . will usually decrease, causing 2nr/L to increase. These arguments
inmply that for an arch to bhe kink stable prior to flaring and then to release enough energy
to explain a flare, it must have a relatively low altitude.

These arguments can be supplemented by noting the stabilizing effect of the conduct-
ing ends on the arch and demanding the arch be stable against G modes. As shown by
Solovev (1971), a sufficient condition for stability for a cylindrical diffuse pinch attached
to conducting ends is

— <1, (6.2)
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and the necessary condition is

j:f.rl,
—— 1. (6.3)
BaBsc?

Both conditions require By to be large and I to be smail. Further, according to Eq.
(1.100) the arch will be stable against resistive ¢ quasi-modes if the 3 of the arch satisfies

3

v Yeritical | where
re2
pcrilvical: gﬂ],z . (6.4)
This can be cast in the form
L%n .
LY (6.5)

«

.2
re;

which again implies L must be small and B,,, must be large. We can then predict that for
an unstable arch to act as a flare and to release the appropriate amount of energy in the
required amount of time, it must be low lying with a small length.

So far we have demanded the arch be MHD stable. Alternately we can demand that
the bulk toroidal current density j. be electrostatically stable prior to flare onset. A
sufficient condition for the bulk current to be electrostatically stable is that the drift
velocity vy be less than some critical thermal velocity. Since the Buneman instability is
the least likely current-driven instability, we impose the condition that the bulk current
be stable against the electrostatic ion ¢y lotron and ion sound modes. Using Amperes’
law, jp = nev,. and vy << ¢, (Appendix B), we require

oy
n>>2.29 X 105 —— (6.6)

VT

within the arch, if the current is Lo remain electrostatically stable. Since, the larger is n,
the greater is the conductive and radiative cooling, we should expect T, to be low in the
stable low-lying arch. Further, since observationally n = 10! to 10'2 ¢m™3 in the flar-
ing arches, and the smallest observed temperature in the solar atmosphere is 6000 K, we
should expect j'l‘ to sutis_fy jT <7< 108 sta‘tamporos/vm2 in the arch prior to its flaring.
As we shall see, j. > 107 statamperes/em? is of the order required to explain the energy
release of the flare. We can then foresee requiring a preflare buildup of current within
the arch.

To summarize, we have predicted that the arches prior to flaring are low lying, with
a small length, a high density, and probably a low temperature, at least in the arch core,
i.e., r ~ 0. Later, after we discuss flare energy requirements, we will estimate the length
and height of an arch for the parameters to be adopted.
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From the preceding discussion one should expect various classes of flares to occur,
from an extremely impulsive rise to an extremely slow rise, all on the basis of gradient
steepness and Lield magnitudes. The Tast-rise flares should oceur in regions of steep
gradients, and slow-rise flares should occur in regions of weaker gradients.  Since in
general gradients can be expected to weaken with altitude, one should expect the most
impulsive flares to occeur in small compact arches, and gradual-rise-and-fall (GRF) flares
should oceur in larger arches, i.e., arches with larger L. On the other hand, great flares,
i the sense of quantity of energy released, should oceur in arches with very large cur-
rents but not necessarily Lirge gradients, and small flares should occur in arches with
smaller currents but not necessarily with weak gradients. Hence on the basis of these
relatively trivial arsuments we should expect four basic classes of flares originating in
arches:

® GRE with small energy release,
¢ (RE with large energy release,
® Impulsive rise with little energy release,

® Impulsive rise with large release.

6.3 Mechanisms for Magnetic Energy Conversion

The most crucial question of any flare model is how the stored energy is converted
into the kinetic processes associated with a flare.  As we have seen, there are basically
thiree means by which current wm a diffuse pinch, and therefore an arch, can be converted
into Kinetic energy:  pure MHD modes, resistive MHID modes, and electrostatic instabili-
ties,

Electrostatic instabilities will play a role in our flare model only as mechanisms to
alter the transport coefficients. This follows because, if the bulk current were to become
dectrostatically unstable, the rate of anomalous heating by microturbulence 1s of the
order ua"j':;..}\", where N,y 15 the anomalous resistivity resulting from the electrostatic
instability. Since AV is small observationally, < 102% ¢m3, Jp must be large to explain
the energy release, and 1 is of the order 10713 5 Hence, if jgpo = 107 statamperes/om>,
de idt - 1026 ergs/s, which is insufficient to explain a flare unless AV or Jp are increased.
In addition, it is easy to show that most MHD modes will be excited prior to the bulk
current becoming electrostatically unstable. Hence one expects the MHD modes to come
into play long before the arch current ever hecomes electrostatically unstable. Therefore
the pure MHD and resistive MHD modes will be of primary concern.

As should be clear, the MHD modes and the resistive modes differ only in that the
MHD modes assume an infinite-conductivity model, whereas the resistive modes relaxe
this constraint and in so doing permit instabilities not because they are energeticallv
furorable but because the infinite conductivity constraint excluded them from the outset.
Thus we found that once finmite conductivity is introduced, a much wider class of insta-
hilities was permitted. We should therefore be careful not to make the mistake of
assuming that if a pure MHD mode were to oceur, a resistive mode cannot also occur or
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vice versa. Indeed we should expect both elasses of mstabilities to occur during the
duration of the flare, if conditions are satisfied. Thus, although we emphasize the tearing
mode in our discussion of energy conversion, we should still expect MHD kink modes to
oeeur.

6.1 Volume Of Energy Release

When we consider the volume within which instability can occur, we have to ask:
what s the thickness in minor radius Ar where instability occurs, and over what portion
of the arch AL should it occur? However, to determine AL or Ar requires precise
knowledge of the current density and BT over the whole of the arch. This of course is
not known. We can however argue that although Ar and AL have certain minimal values
imtially, they will enlarge as the instability convects out of the region of initial instability.
For example we noted in Section 3 that Suydam’'s condition implied convective mixing
outward toward the outside boundary until stable and that this convection should easily
oceur because of the small separation of modes due to the scale of the arch. Further,
because kB = 0 requires specifyving two mode numbers (k, m), there are potentially an
mfunte number of singular layers possible to excite. In addition singular lay -rs within a
distance &r of one another will have nearly the same mode numbers (k, m) and therefore
similar growth rates, 1f unstable. Hence this region of thickness &r will be subjected to
the nonlocal quasi-modes, which can greatly increase the volume in which instability
oceurs. Or, if the amplitudes of the current perturbations which result from the tearing
mode are Large enough, resonances can overlap, substantially increasing the effective
volume of reconnection. We can then conclude that Ar should be much greater than a
thickness of a singular layer. Thus we assume Ar 2> €a and we take Ar = 1 /10,
where rp . is the minor radius of the outside boundary of the arch.

An examination of Eq. (6.2) shows that the critical current density for kink instabil-
ity is a function of the location along the arch as well as of r. We should therefore
expect there s some {ength AL in which instability will occur. We will let observations
of small flares guide us here and assume AL ~ 1400 km. Since r, . observationally
appears to he of the order 700 km, we have that Ar > 70 km. Hence we will udf)s)t in
Wl the estimates to follow an incremental volume AV = 2ar_ Ardl = 4.3 X 102 i3
for a small flare. This necessarily implies 71}%/47r must be 2 105 ergs/em? s if we are to
explam the small-flare energy release, which s typically of the order 1030 ergs over 100 s.
In addition we will adopt the values Bp = 500 gauss, n = 1012 em™3, and T = 5 X 105 K
as the initial temperature at instability onset. It must be recognized that the adopted
values all correspond to the values obtained from small flares as ohserved by the ATM.
We will assume for the present that one can explain large flares by an appropriate scaling
of these parameters.

In what follows we will assume that conditions existing within the arch are such that
the tearing mode can be excited, i.e., A'>0 (Eq. (4.72)). Further, we will use the
wowth rate corresponding to the fastest growing tearing modes in sheet geometry, Le.,

o 0.2 = ka (FKR, 1963) these being the modes we expect to grow first. This implies a
growth rate

Y ——1—— . (6.7)

Ve
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We are using sheet geometry only for ease in calculation, since the numerically caleulated
gowth rates for various cvlindrical magnetic-field models in Appendix C are difficult o
apply in parameterized form. However the growth rates obtained for cylindrical models

are generally greater for the sime Reynolds number and o, In particular the numerical
growth rates appear to be very model dependent; eg., the force-free BFM with § ~ 106

and o = 0.2 gves ¥ = 102, whereas the sheet pinch gives ¥ ~ 10,

Using
Ty = ———— (6.8)

and

= e {6.9)

where a = (. [?p r’!i’p)" across the singular layer or layers, we obtain from Eq. (6.1)

& 16 10”(

(6.10)

\a

. / 32
<n> 1/2 BP)
AV B
dt ) v p

Vi

Consider first the hehavior of the energy release when the resistivity is classical.
Simee p ~ TV dodt ~ T34 which suggests the energy release by the tearing mode
evolves into a state of marginal stability. That is, since dc/dt ~ T-3/ | the rate of energy
release drops of f and continues to do so until the mechanisms that cool result in a
temperature drop, which then drives do/d? back up above the cooling rate, so the insta-

bility evolves to a4 marginal state,

The marginal state will occur at some temperature Tp, at which time

1 de ol ‘TF)
- — X pam, . T
T AL

)
AV ar @1h

where we have used the fact that thermal conduction appears to be the dominant cooling
mechanism during flares.  Hence near marginal stability the growth rate is given by

L Tpan
YTp) = nm,,v‘,;.‘ —— (6.12)
© BLAL

which 18 much less than y(T"l). We identify this marginal state with the so-called
gradual phase of the flare and identify the initial growth phase with the impulsive phase

or flash phase. Such identifications necessarily imply that the energy release is continu-
ous bul decreasing during the gradual phase.
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Inserting the adopted values for T,

n B, and AVinto Eq. (6,101, we obtain

dt at

{ 6.8 « 1033
s 2 3~ (6.13)

A typieal small flare releases = 103 ergs in a time At = 100 5. Thus we require
dordt = 1028 which implivs a = 7.7 x 100 em. Ana = 7.7 ¥ 10% em carresponds to a
perturbation with a wavelength A s 10ma = 2.4 © 107 em if o = 0.2, Such a wave-
length perturbation will not cause the arch to be globally kink unstable: hence we do not
expect these perturbations to cause global kinks in a flaring arch, although longer wave-
length kimks can develop.

A wradient of the order 7.7 ¥ 10% ¢m and a B , = 500 gauss corresponds to a
toroidal current density j > 1 X 108 statamperes/em? in, or Bpla = 0.06 gaussicm across,
the singular layer: g value 3 102 times greater than has been observed in active regions
(Title and Andelin, 19711 This value of the field gradient should not however be con-
sidered excessive, since the observations typically have a spatial resolution >> 700 km
and thus average over the whole of the arch cross section, whereas this value of B_Jja
should exist only in a localized region, which, as we will see, can occur because uf)a
rapd]ly growing current density in the region of the stability.

6.5  Anomalous Resistivity and the Energy Release Rate

woand j x 1 X 108 statamperes/em?, we find that
noC 26 10 et s required Tor stability against the electrostatic ion sound or ion
evelotron mode. Since we have chosen n = 1012 we still satisfy this requirement and

the bulk current s electrostatically stable. Simifarly the value a obtained earlier also is
above the gradient scale for the won sovnd instability (Table B1), which vields for the
adopted values ¢ ¥ 102 em. However both of these equivalent results imply that it may
be possible to dnve the current electrostatically unstable in the regions around the singular
laver. Henee 1t s nuportant that we consider how anomatous resistivity will affect the
rate of energy retease.

Using Fq. (6.6) and inserting T

As discussed 1 Appendix Bo we can expect two types of justabilities that can lead
to anomilous resistivity s current driven, either parallel or perpendicular to the magnetice
field, and beam driven. We will consider only the parallel current-driven and beam-
driven instabibities, while noting that the cross-field-driven instabilities have thresholds
sinnliar to the purallel-field-driven instabihities and as such will vield similar results.  How-
ever i more correct treatment of current-driven anomalous resistivity would examine j, -
driven mnstabilities, smee the current is flowing perpendicular to B near the singular laver.
But because the magnetic field changes sign at k=B = 0, it is small there, and we will
neglect 1t to first order.

Let us assume that the parallel-field current-driven ion sound instability is excited
and that 7 T, - 100 As given i Table B2, the a required for instability is
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c <1>‘/2 1
a3 —— ,
“pi \Pp T, m T

172 )
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T m. e

which for the adopted values yields a = 1.4 X 102. Such a gradient corresponds tc
Jp = 8.52 X 109 statamperesfem? or Bfa = 3.57 gauss/cm in or across the singular
Such a field gradient is not likely to he found along the whole length of arch but r
in a well localized region and will act as a localized current interruption or discharg
generating localized voltage drops along the singular fayer.

These regions will expand somewhat, since the unstable waves of the excited 1
bility will propagate out of the region of instability, at their group velocity, into a
where they are stable. Within these small regions the resistivity will be anomalous,
the instability exciting the anomalous resistivity, here assumed to be the ion sound
instability, will saturate in a few ion plasma times to a state of marginal stability.
within these regions one should expect extreme localized heating much greater thai
the regions where the resistivity is classical. However it is unlikely that the bulk ¢
across the total cross section of the arch will become electrostatically unstable, bec
of the steep gradients required.

Since the effective collision frequency, due to the current-driven turbulence, ¢
typically as v, ~ Awp(,, the growth rate of the tearing mode in the presence of th
bulk current-driven anomalous resistivity will be dominated by the density, so that
v ~ n~12 rather than y ~ 7734 Equation (6.1) b omes

A1v2 /B N3
Lode o8 <J_’> B
AV dt n a v

where A for the ion sound instability is of the order 1100 Using the adopted va
n and Bp and @ = 102 cm, we find

' 4126 X 107 ergsiem? s
\V dt o ergs/em” s,

whi i is aj.roximately 10?% greater than if the resistivity were classical.

If the flare were due only to these small regions within the arch, then the ve
instabil.ty would be = 1020 em3, or if a given flare resulted from a combination
ing modes dominated by classical and anomalous resistivity, that particular flare v
show evidence of extremely intense emission within regions 5 X 107 em? in cros

o>

and length < 107 em,

However (o heating at the onset of anomalous resistivity is dominated not
tearimg mode but by the current-driven microinstability, sinee the growth rates f«
micromstabilities are so much greater than the growth rates for any macroinstabi
Thus the temperature within an electrostatically unstable singular .ayer will grow
sively ot a rate
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After saturation of the mucroinstiability, which occeurs i a few o the heating rate

the microinstabihty is given by

ne

aT
I ¢ g 2
nk Py LANIT

which is of the order 7+ 107 ergsiem? s within the electrostatically unstable singu

layer. This heating however 1s donunated by the tearing-mode energy release, whicl
turn is dominated within these singular lavers by anomalous resistivity. as given by
(6.15).

Let us summarize what we have found as far as energy release is concerned. V
have considered two cases: an clectrostatically stable bulk current which leads to a
by the tearing mode dominated by classical resistivity, and an electrostatically unstz
current occurnng only m some singular layers while the remaining singular layers re
electrostaticatly stable. This second case results in what should be construed as nor
thermal heating within the clectrostatically unstable singular layers. Further, the to
volume occupied by all the singular lavers dominated by anomalous resistivity is =
em3 | which s = 10-5 less than the resolution-limited volume of < 1025 ¢m3 repor
the Skylab observers, whereas the volume required to explain the flare with a classi
resistivity dominated energy release was 1023 em3 . which is = 102 less than the oh
volume. However present observations do not require that we invoke bulk current-c
anomalous resistivity to explain the flare energy, nor do present observations suppo
assumptions of such grachents. flence we will not comment on this further.

Let us now consider a source of anomalous resistivity that is generated by a ne
thermal beam trapped in a current-carrying arch, as developed by Papadopoulous an
Coffey (1971, 1974b) and briefly discussed in Appendix B, If this beam is inhibit
from relaxmg quasilinearly by nonlinear processes, the beam will represent a nonthe
driving mechanism, capable of producing ion density fluctuations. The particular n
linear process considered by Papadopoulous and Coffey is the parametric oscillating
stream instability (OTS). The requirement that OTS stabilizes the beam before the
linear relaxation of the beam occurs is given by

o, \)” o 23, oy 23, ' 13 . 317
—2 >lez| - ( I et T L 1
n Uy, .

w |

where vy, s the beam velocity, Aey s the beam thermal spread, ny is the beam den
and kX, = 015, k0 being the wave number with the maximum growth rate.

The assumption that a4 beam exists in an arch (the origins of such a beam will
discussed 1y Section 8) with ¢, = 1010 ¢my/s and T. = 10% K yields
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2/7
Avy ny,
— < 10\ — .
vy, n

If ey /e, = U3 and nos 1012 em™, Eq. (6.20) implies n, <7 ¥ 105 ¢m™3
is to be stable against quasi-linear relaxation. If such a beam exists within th
will lead to purely growing ion-density fluctuations with an effective collisior

/2

n v, \2 Av
m b h h
Vorr = 2 <§> wlw”"m Ag) < —,;*)(__) o

UT,, b

(Papadopoulas and Coffey, 9174b). Using the values previously obtained, we

- . nh
U(’ff = 86.7 (A)p‘, —’T .

As noted by Papadopoulos and Coffey, Egs. (6.21) and (6.22) show tha
anomalous resistivity is proportional to the beam energy, and for fixed heam
resistivity scales as n™1/2. Thus the anomalous resistivity will be a decreasing
altitude in the arch.

Since the Coulomb collision frequency v,; = 80n7‘(,"3/2, we find for T,
n > 1012 cm 3, and ny/n = 1076 that

v
A< 3 x 102,

y o
l(’l

Hence we expect the bulk resistivity n to increase by = 3 X 102 over its clas
Using Eq. (6.10), we find that the energy release will increase by a factor of
those values obtained when the resistivity was assumed classical.

Since the time scales for beam stabilization by OTS are so short, a guas
should be established so together the heam plasma and parametric instabilitie
to a marginally stable state. Thus the bulk anomalous resistivity generated b
will exist with a 1, given by Eq. (6.22) over the duration of the beam. Ho:
effectiveness of this mechanism is clearly related to lifetime of the heam. or
of time in which beam replenishment occurs, as well as the cross sectional ar
the beam exists. Since these questions are clearly related to the orgins of th
will postpone its discussion until we take up the question of flare precusors.

We are now in a position to estimate the size of the arch. Taking the a
of BI, and taking the total energy released during a small flare to be = 1030
the total storage volume required is of the order 5 X 102% em®, which is rel;
If the volume of the observed arches is greater than this, with B, ~ 50

arch will have sufficient volume to store the energv necessary to l'xp{ain the
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release.  If the volume is less than this, a current reservoir must exist heneath the photo-
sphere which maintains the current throughout the flare duration.

If we take 2nr/L = /5, with Bp =~ 500 gauss we require By >> 795 gauss, if the
arch is to be MHD stable prior to flaring. A ratio of r/L = 1/10, using V = 7R, we find
R = 3 X 10% em. Hence, the arch will have an altitude of the order 3000 km for the
small flare considered.

We will conclude this section by discussing briefly the validity of Eq. (6.1). First, it
should be obvious that the use of

dt  4m

sweeps many problems under the rug. It ignores the fact that one should expect things
like nonlinear mode coupling between primary resonances, secondary resonances, etc.
which occur by generating higher harmonics and subharmonics of the original modes.
Everything else being equal, these higher harmonics necessarily have higher growth rates,
by Eq. (4.23). Similarly, the stochastic behavior of the field lines around the separatrices
may enhance the resistivity, thereby generating an MHD turbulence spectrum. Indeed
[chimaru (1975) has recently shown that an explanation of the reconnection rate
empirically derived by Parker (1973) can be derived theoretically by invoking MHD
turbulence in the neutral sheet. Hence it is not unreasonable to conjecture that the MHD
turbulence required by Ichimaru is generated by the stochastic field-line behavior during
resonance overlap, as discussed in Section 5, but this is clearly not huilt into Eq. (6.1).

In addition Eq. (6.1) ignores the fact that different singular layers are tearing at different
places at different times within the flare volume. Or, to put it otherwise, Eq. (6.1) aver-
ages over a multitude of sins which the romplexities of the physics and mathematics
forces on the physicist.

7. THE FORMATION OF IMPULSIVE ELECTROMAGNETIC
BURSTS AND SHOCKS

7.1 introduction

As is clear from Section 6, the mechanisms we have proposed for the thermalization
of the magnetic field in an arch are more than adequate to explain the total energy release
of a flare. If these thermalization mechanisms were to lead to a thermal plasma only, our
model could explain only the thermal flare, i.e., those flares that do not lead to impulsive
electromagnetic bursts (IEBs) and to shocks. Hence the purpose of this section is to
examine the means by which MHD and resistive MHD instabilitics can lead to 1KBs and
to shocks.

As a way of introduction to what we feel is a more realistic explanation of 1EBs, we

briefly illustrate a well-known laboratory phenomenon that has rmany features similar to
those that occur during a nonthermal flare.
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Fig. 19 - X-ray troce due to disruptive instability

Figure 19 illustrates the x-ray trace, obtained from the ST Tokamak (von Goeler
et al., 1974), generated by an instability referred to as the disruptive instability. This
figure illustrates two things: an extended x-ray bhurst and, superimposed on it, impulsive
x-ray bursts. The similarity between this lahoratory phenomenon and the impulsive flare
should be ohvious and appears to be quite significant. First, the explanation of this
impulsive behavior, as we will discuss in more detail, is believed to result from a com-
bination of MHD and resistive MHD modes, and, second, the bremsstrahlung bursts are
not due to just accelerated particles but rather from bhoth intense thermalization of the
magnetic fields and electron acceleration in the induced electric fields generated during
instability. Hence soft and hard components of these IEBs exist, both emanating from
the same volume.

7.2 Thermal or Nonthermal Flares

To make clear what we mean by thermal and nonthermal flares, we examine under
what circumstances the tearing mode is a thermal or nonthermal process. The defination
we will adopt is: a thermal plasma is a plasma in which relaxation hetween like species
has occurred or in which the approach to relaxation has reached some semblance of a
steady state. Hence a necessary condition for the heating to he nonthermal is: the heat-
ing per particle per second must exceed the rate at which relaxation occurs between like
species.  In our case the species of interest i1s the electron.

The above definition implies that the tearing mode will act as a nonthermal heating
mechanism for electrons if

Y8,
Amn 7 VeokTe 7D

where n_ is the number density of those electrons in “resonance” with the tearing mode
and ¥} is the relaxation time between electrons, defined (Spitzer, 1967) as

‘ T3(K)
v, = 0.266 1_1(\ oy e (1.2)
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Equation (7.1) states that those electrons in resonance with the tearing mode will be
heated at a faster rate than electron-electron collisions can relax the electron distribution.
Generally only the fast-growing short-wavelength tearing modes will satisfy this condition.

Equation (7.1) has a number of consequences which can better define the origins of
the thermal and nonthermal flares. Clearly the larger the ambient density, the harder
(7.1) is to satisfy, and the larger the B_ and v, the easier (7.1) is to satisfy. Since we
expect B, and vy to increase as we descend in altitude and n to decrease as we ascend in
altitude, there should exist an annulus, with a thickness Ah in altitude and mean altitude
h, within which nonthermal flares generally occur.

Using the adopted values from Section 6, we find the energy transmitted to an
electron per second, by the tearing mode, is of the order 86 keV/s, if n, = n. This rate
of nonthermal heating is more than sufficient to explain the observations.

The tearing mode will also accelerate a selected few electrons by the induced toroidal
fields, generated during reconnection. The magnitude of this electric field, and the sub-
sequent energy gain Ae can be crudely obtained from Faraday’s equation. We obtain
Ae = e‘pra221r/coz, and using the values adopted for B,, v, a, and «, we find a maximum
energy gain of the order 2MeV.

7.3 Mechanisms That Can Form IEBs and Shocks

As noted, nonthermal flares are invariably associated with shocks. This is highly
suggestive, because the formation of a shock requires a sudden increase in pressure, and
to form such a pressure pulse requires either that the flare heating mechanism rapidly
thermalize part of the stored energy or a that rapid motion of the bulk plasma takes
place. We consider both these possibilities.

If we require the impulsively heated and/or accelerated electrons and shocks to
emanate from the same thermalization volume within the arch, we must also require the
conversion of potential energy to kinetic energy be extremely rapid during their forma-
tion. This suggests the difference between the thermal and nonthermal flare lies in the
rate of energy conversion per unit volume. Since the greater the conversion rate for this
model, the greater the rate of current dissipation, it follows that during such rapid dissipa-
tion the magnitudes of the expected current perturbations by the tearing mode are also
greater. Hence the likelihood of nonlinear resonant overlap is greatest in this situation.

Nonlinear resonant overlap, we have noted earlier, will result in abrupt and drama-
tic increases in the rate of reconnection. During overlap we can therefore expect impul-
sive heating and acceleration at rates which are much greater than linear analysis would
predict. Overlap should also increase in likelihood of (7.1) being satisfied.

Finn (1975) has calculated the magnitude of the required current perturbation for
overlap of the m = 2 islands and m = 3 islands for a peaked current model (Furth et al.,
1973). He found that the perturbations necessary were typically =~ 1.5%. For a less
peaked current profile (less shear) Finn found somewhat larger current perturbations
necessary (4%). These studies illustrate that relatively weak perturbations can lead to
resonant overlap and may play a very important role in flares.
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Fig. 20 -- Circuit analogy showing reconnection of cur-
rent paths following resonant overlap of the magnetic
fields in a plasma (8T1X, 1975)

To estimate the magnitude of energy dissipated during overlap of two separatrices,
we follow a simple circuit analog (Stix, 1975) illustrated in Fig. 20. We assume the
presence of two primary chains of islands at resonant surfaces ¢ = m and q = m’, both
growing due to the tearing mode. Next we assume a sheet geometry for simplicity.
Initially a current i, flows on the inner of the two adjacent magnetic surfaces and a
current iy, I, # i;, flows on the outer surface. We can represent the poloidal magnetic
energy stored between these resonant surfaces by I,ii2/2, where L; is the leakage induct-
ance. Similarly th(‘ magnetic energy stored outside of the outer surface is given by
(Li% + 2Mi (, + [i2 )/2 where M is the mutual inductance arising between the adjacent
surfaces. ()verlappmg intermixes the field lines, effectively generating a series connection,
iHustrated in Fig. 20.

Initially the current through the inductive elements is iy and iy. Because V jx 0,
the difference in current i, - {; must flow radially between the former adjacent surfaces.
The transient flow will then generate a polarization current

2 -
ke OB (7.3)

p p2 ot

This polarization current will then lead to a net gain in plasma energy

m(,‘,-czh'")
Ac = A (7.4)
2B?
or, since

E X
- €28 9

B

m .
Ac = A( 5 uf,); (7.6)

which, as Eq. (7.6) shows, appears principally as ion energy.
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The radial current path is represented by some high-impedance Z bridging the induc-
tive elements. Stix (1975) shows that with perfect coupling, I, = M, the total loop cur-
rent has a net change Ai ~ (L;/2L)i, - iy) and a magnetic energy L(i; - in)2/8 is
dissipated in the bridging impedance. 'The magnitude of this dissipated magnetic energy
can be considerably greater than what one would find from one resonant surface.

An alternate as well as complementary means by which this model can generate
[EBs and shocks is by global kink modes. That is, the whole arch or a substantial portion
of it may undergo kinking, leading to a strong disruption of the bound plasma. Since a
kinking arch will produce effects similar to the disruptive instability previcusly mentioned,
this would be an appropriate place to include it in our discussion.

The disruptive instability (D) develops when the toroidal current in a tokamak
causes the safety factor ¢ at the plasma boundary to be small, i.e., ¢ 3 or 1. The DI
manifests itself either as singular or quasi-periodic abrupt changes in the plasma parame-
ters. These changes are a result of a slow m = 1, n = 1 internal kink mode which has a
srowth rate v = u_.\/R. During the growth x rays are formed which are suddenly reduced
in magnitude because of a rapid cooling in the central region of the Tokamak. This
cooling disruption appears as a symmetric m = 0, n = 0 mode (in an arch the n = 0 mode
is forbidden, although the m = 0, n = 1 mode can occur). After the cooling disruption
a slow process of relaxation sets in with ¢ < 1 at the magnetic axis, i.e., r = 0, and the
whole sequence may repeat itself,

Kadomtsev (1976) has recently proposed a new explanation for this phenomenon.
Qualitatively Kadomtsev argues that as the internal kink grows, it will compress neighbor-
ing magnetic surfaces to one side, which then undergo resistive kink modes and thus
reconnection.  As the kink attempts to stabilize itself, it will nonlinearly swing back and
forth between stability and instability. During this period the reconnection process will
repeat itself quasi-periodically, so the magnetic field dissipated will appear as impulsive
joule heating and subsequently as x rays. If the distortion of the magnetic surfaces by
the kink modes 1s great enough, the kink can cause resonant overlap with an accompan-
ing inerease in field dissipation and subsequent heating. This should be especially true in
an arch, hecause of the close spacing of the modes.

If we apply these ideas to an arch, we find similar effects. Since a kink oscillates
with a frequency of the order f = 2w/kv,, we find for the m = 1, n = 1 mode f = Lfv,.
This corresponds to a frequency range of about 1 to 30 s, the exact magnitude being
determined by the local conditions within the arch.

If the kink were an external kink rather than an internal kink, the kink could thrash
about, causing shock waves in the ambient atmosphere, If these shocks have a large
enough Mach number, the shocks can excite various two-stream instabilities (Tidman and
Krall, 1971), thereby causing a rapid “thermalization” of the shock’s ordered energy.
Hence, i this case, one should expeet bursts of bremsstrahlung with a period similar to
those obtained earlier.,

If the kink were instead a resistive kink which formed on the plasma boundary of
the arch, as depicted for a diffuse pinch in Fig. 21 and for an arch in Fig. 22, it could
explain why impulsive x-ray bursts and type {1l bursts sometimes appear in groups, five
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(a) (b)
Fig. 21 — Resistive instabilities for a diffuse pinch
(a) stabilized pinch with kink in j.(m = 1) (b) sta-
bilized pinch with sausage in j,(m = 0)

RESISTIVE KINK
SLIDES ACROSS
ARCH

TYPE 11} BURSTS FORMED MERE

RESISTIVE KINK
FORMING

———e
ve

Fig. 22 — Type 111 bursts and resistive sheet kink
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type 111 bursts and fice x-ray bursts with similar structure. This follows hecause an MHD
kink results in a strong distortion of the plasma column and in so doing results in an
appreciable induced electric field, which can accelerate particles (Glasstone and Lovberg,
1960).

A similar situation can occur when resistivity is taken into account. Here a kinking
current sheet will be formed at the boundary of the plasma column and will slide across
the column as it kinks (Fig. 21). Hence the electrons can escape from the sheet as the
sheet undergoes resistive kinking. However, for this mechanism to explain the repetitive
behavior typical of many type 1l chains, the wavelength of the kinking portion of the
arch must be much less than the arch length, so as the kink thrashes back and forth, it
will accelerate electrons in bursts with the proper frequency f = 2m/kv,. If such behavior
should be observed and is correlated with type III bursts, it will be strong evidence in
support of this resistive-kink flare model.

The formation of IEBs by the above mechanisms has a number of advantages over
the standard explanation that IEBs form by electron deposition into the denser atmosphere
beneath the acceleration site. These advanrages are:

® There is no need to find an exotic acceleration mechanism that accelerates only
electrons with a 90 to 100% efficiency;

® We need not accelerate ~ 1039 electrons to form the [EBs, as required by the
deposition hypothesis, since the same electrons can be repeatedly heated and/or
accelerated within the same volume (the accelerated electrons being stopped quickly by
the high arch densities);

® We need not develop separate mechanisms to form [EBs and shocks, since they
appear together as a natural consequence,

® We can show that similar behavior manifests itself in labhoratory experiments,
serving as a guide to our understanding.

In summary we have argued that IEBs and shocks can result from impulsive heating
and/or acceleration. This explanation we believe is more natural than previous explana-
tions.

7.4 Other Modulation Mechanisms

One odd thing about nonthermal flares is that occasionally chains of type 111 bursts
are formed, the bursts sometimes being separated by intervals of < 1. Since the type
1] burst results from an electron stream, these chains may be simply a result of pinching
instabilities to which electron streams are inherently subject. However, although this
explanation may be correct, there are two other means by which one could explain these
chains within the context of this model.

Consider first the MHD m = 0 mode. As discussed by Glasstone and Lovberg (1960),

this mode in the presence of a stabilizing axial field B, is known to oscillate with a fre-
quency
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2. B
Amrp,

) (7.7

where r; is the equilibrium pinch radius, B is the magnitude of B, and p, is the surface
density of the current sheath which is assumed to exist at the equilibrium radius. These
oscillations, unlike the m = 0 oscillation in the unstabilized pinch (B, = 0), are usually
small but discernible. However they generally do not generate the radial shocks charac-
teristic of the vastabilized pinch.

Since the period of oscillation that is characteristic of the observed quasi-periodic
bursts is typically about 1 to 10 s, and we have adopted a value for B =~ 500 gauss, we
find that r;p, = 1028, This implies both the equilibrium radius of the arch and its length
must be large. Using a value of r; = 10% ¢m, and demanding the period be of the order
10 5. we ind the m = 0 mode will induce an electric field

T
E.~ £ (1.8)

which gives E.. = 1072 statvolts/cm. The energy accumulated by these particles per
oscillation is &e =~ AL (eV:, where AL is the length in centimeters of the region where
B, is changing within the sausage. Thus, if an arch were sausage-mode unstable, it can
generate modulated-heated and accelerated electrons of reasonably high energy, with a

period given by (7.7).

An alternate cause of quasi-periodic bursts may be the fusing of one or more island
chains formed at the resonant surfaces ¢ = m. The associated rapid change of magnetic
flux as the islands are fused will produce voltage spikes due to flux changes, i.e., V = dd/
dt. where & = 1/e/B+dS.

The evolution of an island chain is as follows: Short wavelength island chains are
formed first during the evolution of the tearing mode, because the shorter wavelength
islands have a much greater growth rate than the longer wavelength islands. These short-
wavelength islands then represent parallel filaments, which then fuse to form lower energy
and slower growing islands (Fig. 23). This process repeats itself until the lowest energy
longest wavelength is reached. Tnvestigations by Finn and Kaw (1976) have shown that
fusing of islands will occur at the fast MHD rate, when the forces of fusion overwhelm
the stabilizing forces, due to the compression of the magnetic field between islands. We
can treat this phenomena in a semiguantitative form by developing a circuit analog to the
problem. To do this we can introduce lump circuit parameters to describe the physical
mechanisms at work in a plasma. Following Tidman and Stamper (1973), we convert the
olectron momentum equation to the form

V=IR+

v (7.9

dUIL) Idt
t C

where [ is the total current. R is the total resistance, L is the inductance, and C is the
plasma capacitance,
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t 1

Fig. 23 — Evolution of the tearing mode

Recognizing that a magnetic island represents a circuit filament, we can treat each
island as a conducting wire with a self-inductance and a mutual inductance between dif-
fering islands. First we assume each island is part of one island chain on a resonant sur-
face ¢ = m, so that each island is in parallel. The inductance of multiple conductors
may be found from circuit theory, using formulas for the self-inductance of a straight
conductor and for the mutual inductance of parallel conductors. In our simple case, that
of m equal wires corresponding to m islands spaced uniformly on a circle whose radius is
determined by ¢ = m and connected in parallel, the inductance is given (Grover, 1946)
by

2AL
L =0.002 AL(Qn (—}{—[> - 1] microhenries, (7.10)
where
K- (rmri”"‘)”"', (7.11)

n which r = tn p - 1/4, p being the mean island radius, and in which r, corresponds to
the radius of the resonant surface. When the islands fuse, we expect a voltage drop

1dL(t
vy = A (7.12)
dt

assuming [ is constant.

Typically in conventional electric circuits inductances are consitant, so that the dL/dt
term s zero. However in plasma configurations this is not the general situation, and one
finds rather novel electrical behavior.  Indeed, as noted by Glasstone and Lovberg (1960),
the [d1/dt term is commonly much larger than the voltage driving the circuit. 1t is from
this term we expect the chains of voltage spikes to have their origins. To see this,
assume that Am islands fuse in a time At. Differentiating Eq. (7.10) with respect to
time gives
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, AL dI
L _ .00z 2L 4R Am

dt R dm At ° (7.13)

which leads to Am voltage spikes every Af seconds. Assuming At =~ y71, where v is the

rate of sland fusion, we expect Am voltage spikes per second. These voltage spikes will
lead to Am bursts of heated and accelerated electrons per second, which will appear as a
chain of bursts when an island chain fuses to form the lowest energy island. Since other
island chains can fuse, more than one chain of bursts can occur.

Estimating the magnitude of Eq. (7.12) is difficult, since the total current is dis-
tributed throughout the cross section of the arch; and each island when it forms will have
a portion of the total current, which differs from that of its neighbor on a different
resonant surface. However it is not difficult to convince oneself that the maximum
energy gained by a charged particle during these voltage changes is of the order 2MeV
found earlier, and the time between bursts is like an MHD growth time, which is of the
order 1 to 0 s, depending on the wavelength of the mode.

8.  FLARE MODEL PRECURSORS
8.1 Introduction

The role of precursors is of particular importance in this model, because the precursor
mechanisms must set up conditions for onset of the MHD and 1esistive MHD instabilities
used to explain the energy release of the flare. Since these instabilities are driven by ..
we shall be interested in mechanisms that can modify the radial-current-density profile.

As noted in Section 4.5, a perturbation in j, is directly related to perturbations in either
electron density or electron temperature and to the driving electric field.

An examination of the possible mechanisms for altering the current density requires
a knowledge of the sources of the current. One can convenientlv but somewhat articically
split the possible sources of current into those that occur in or above the phaotosphere
and those that occur below in the convection zone or deeper. Examples of mechanisms
that can cause currents by motion of the photospheric fluid are: shearing of one foot of
an arch with respect to the other, the differential rotation of one foot of the arch with
respect to the other, and the rotation of the individual feet of the arch (Fig. 21).

Mechanisms that may cause currents to flow in the convection zone are poorly
understood and can only be assumed to exist. This assumption however is reasonable,
since the fluid in this zone is a partially ionized plasma with anisotropic transport coef-
ficients, much like the onosphere. FHenee, due to collisions with neutral particles, elec.
trons and ions can move across field lines in the convection zone, with different velocities
and directions, thereby generating currents. Under these circumstances the current will
have large components perpendicular to B, and the force-free behavior usually assumed in
the solar atmosphers has absolutely no validity in the convection zone or in most of the
photosphere.

Further, if one helieves the typical models of solar magnetism, a safe assumption is
that the magnetic topology is multiply connected in the subphotospheric zones and
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represents an enormous reservior of stored energy in the form of currents, so that the
source of flare energy which is released in situ above the photosphere need not be totally
stored there. Corsequently we will assume that a current does exist in the convection
zone and that this current can be carried up with the magnetic tuhes of force into the
solar atmosphere.

8.2 Mechanisms For Driving Currents

We will here examine heuristically two examples of current sources, the first due to
the twisting of the feet of an arch and the second due to an evolving arch expanding
from beneath the photosphere. Consider an arch that is straightened into a cylinder with
its feet anchored on two endplates, and assume these plates rotate with an equal and
opposite velocity v, (see Fig. 16a).

Using Fig. 16b we see that the plasma flow, tangential to the longitudinal field,
generates a voltage difference between the two radii R, and R, given by

AV:U‘BT _— . (8.1
& ¢

This voltage corresponds to a radial electric field

(R.2)

E, =- == =

AV Ul/) [57.
AR

L-

c

Taking By = 11500 gauss and v, = 10% em/s yields E.=83X 107 statvolts/em. This
magnitude of E_ is large but not surprising. To see this we make use of the boundary
conditions fo- a plasma-plasma interface (Krall and Trivelpiece, 1973)

v
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Fig. 24 Examples of photospheric - fluid motion that can cause currents
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Fig. 25 — Reverse current circuit analog of a
current system due to the twisting of the feet

on an arch
nXv X [B]
nx [€] = — (8.3)
n- [B] =0, (8.4)
47j
nx [B] = —E—f : (8.5)
and
n- [v] =0, (8.6)

where n is the interface normal and j, the surface current. Equations (8.4) and (8.6)
simply state that the normal component of B and v are continuous across the interface,
which here corresponds to B, and v, = 0. Equations (8.3) and (8.5) require the tan-
gential components of E and j, to be continuous across the interface. For a poloidal
component of B to arise at this boundary due to twisting in ¢, requires one to drive a
current across the By field and then upward along the arch and down to the other leg to
form a complete current system, as is illustrated in Fig. 25. However this flow cannot
occur if the conductivity is a scalar. To see this we write Ohm’s law in its standard form

(8.7)

j=o(E+"XB).
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Projecting out the components of j parallel to B gives jy = oE,. However our current-
driving mechanism is due to the v X B term. Hence a v X B force cannot drive the cur-
rent that flows along the arch unless the conductivity is a tensor. Ohm’s law then
becomes '

i='o'"(E+ "Z(B), (8.8)

and the v X B force can give rise to a current component in another direction.

For the conductivity to be anisotropic the ion neutral and electron neutral collision
frequencies v;,, and v,, must be large. In particular they must satisfy the conditions

ci

— <1 8.9

Vo (8.9)
and

Q

v“ <1, (8.10)

en

where §2,, and §2; are the electron and ion gyro frequencies, so that the ions and
electrons are effectively unmagnetized in the presence of the neutrals. Under such cir-
cumstances the twisting of the arch’s feet must occur in regions deep in the photosphere
where conditions (8.9) and (8.10) are satisfied. It is for these reasons that E, is so large,
since @ will not approach the magnitude one would find if ¢ were simply a scalar, and
determined completely by the electron-ion collision frequency.

The electric fields generated by this twisting will generally damp in magnitude as
one moves higher into the arch, so that when o becomes a scalar, the currents perpendicu-
lar to B become extremely small. The arch will then be approximately force free.

Observations by Severny (1965) have found vertical current densities of the order
2 X 103 statamperes/cmz, and Moreton and Severny (1968) have found that prior to
flares this value is even greater. Their angular resolution however was poor, =~ 7 seconds,
and therefore averaged over a substantial fraction of the observed region. Title and
Andelin (1970) have found somewhat larger values j & 4 X 10% statamperes/cm?
averaged over an angle of =~ 1 second. Since the observable photosphere has a tempera-
ture of 6 X 103 K, the plasma has a scalar resistivity of = 2.36 X 1013 5. Thus the
plasma can support a vertical current j ~ 4 X 105 statamperes/cm?, driven by a vertical
electric field E.. * 9 X 10°8, which is ¥ 104 smaller than the radial electric field calcu-
lated earlier. ’lzi\is suggests an anisotropic conductivity of =4 X 10% s™! beneath the
photosphere.

There are two important points concerning this example. First, the source of current
must exist deep in the photosphere. Such circumstances permit strong convective
behavior on the part of the field lines there and thus permit perturbations caused by this
convection to propagate upward into the arch. Hence line tying will not be that effective
in stabilizing the arch against long-wavelength convective instabilities. Second, the
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SURFACE

Fig. 26 — Kink forming and propagating
up through the photosphere into the solar
atmosphere

requirement on the part of the boundary conditions that return currents exist, if both
feet rotate in the same direction but at different rates, implies that the B, component of
B will reverse its sign many times and therefore that the field is strongly sheared. Such
fields are strongly susceptible to resistive instabilities.

The seconid example we will consider is simply a magnetic tube in the convection
zone of length L, along which a current flows. The source of current is considered
unknown. Initially the tube is assumed to be in equilibrium, so that

(B2 + B})
P+ —Fg— = Pext (8.11)

where P, is the intemnal gas pressure, P,,, is the external pressure, and we assume, along
with Parker (1955), that there is no magnetic field outside the flux tube. Since B2

is positive, P,;; < F,,,. Thus, if the tube has a small thickness in comparison to the scaﬂ:
height, the temperature on the inside will equal that of the outside, which implies p,,, >
Pye- Under such circumstances the tube will have magnetic buoyancy and will rise if
perturbed.

In equilibrium the magnetic tension must balance the buoyant force. Suppose then
that the tube kinks, as depicted in Fig. 26, and B, > 2maBy /A, where ) is the wavelength
of the kink. The kinking force and buoyant force will cause the kink to rise if

32 B,

N(Peyy = Pint) *+ - > el (8.12)
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or, using Bp > 2maBp/A,

> B2, (8.13)

where Ap = p iy = Ppy > 0. When N = \/ma, this condition is most easily satisfied and
the kinked tube will float to \he surface at a velocity somewhat less than the Alfven
velocity. This occurs because the kink generates a surface wave of depth A, which causes
more magnetized mass to be dragged along by the kinking motion. The increase in
accelerating mass is of the order (A/@)2(pgy(/Piny) (Manheimer et al., 1973). As the tube
accelerates upward, the strength of the toroidal component of B will be reduced; thus
the cross sectional area of the tube will increase. The current density will then try to
redistribute itself within the cross section to minimize the system’s energy. During this
period the tube will be susceptible to MHD and resistive MHD instabilities. However the
global instabilities will have reduced growth rates, because of the surrounding high-density
gas (Manheimer et al., 1973), until they reach the lower densities of the upper solar
atmosphere. The tube, now an arch, will continue to expand until in equilibrium or will
cause a flare in an attempt to minimize its energy and thus come into equilibrium with
its surrounding atmosphere. If the tube carries a total current of the order 102!
statamperes, it will be more than sufficient for the energy release.

It is difficult to be more precise in these matters because of the enormous physical
complications implied by anisotropic transport coefficients and the clear lack of knowl-
edge concerning the environment below the photosphere. However, if these arches do
carry current when they break through the solar surface, they can flare by the mechanisms
discussed.

8.3 Parametric Excitation Of MHD Kink Or Resistive Kink Modes

It is interesting to consider how one might parametrically excite the MHD kink and
resistive kink modes. To excite these modes, there must be a coupling to an imposed
oscillation, i.e., a pump wave. This parametric coupling is provided by nonlinear effects,
and to make these modes grow, one must feed energy to them at a rate which exceeds
the rate at which energy is dissipated for the mode in question. Thus, to excite these
modes parametrically, the amplitude of the pump has to exceed a certain threshold.

Recent work in dynamic stabilization of kink modes in CTR (controlled-thermo-
nuclear-research) devices has shown that dynamic stabilization, as well as destabilization,
can occur by parametric resonances (e.g., Keller et al., 1976). For example the excitation
and suppression of kink modes by coupling to ion sound waves has been shown to be
possible (Guzdar et al., 1975). This is accomplished by generating a torsional Alfven
wave, whose azimuthal field B, has an associated velocity v, , leading to a relative shear
between concentric layers. The Alfven wave leads to a coupling between the kink modes
and ion-sound modes. 1If the ion sound modes are growing, they can pass their energy to
kink modes, thereby driving them unstable. Thus it appears possible that waves from the
photosphere can lead to eventual instability in the arch. Undoubtedly other means exist
to parametrically excite kink modes.
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Parametric excitation of kink modes is of particular interest in the arch, because the
spacing between normal modes of the system will generally be very small because of the
large size of the arch. Thus it will be much easier to find modes which are close enough
together so as to satisfy the resonance conditions and thus become parametrically excited.

A twisting of the arch can produce torsional Alfven waves. However the existence of
growing ion sound waves in an arch is in doubt unless T, >> T;, although growing acoustic
waves are a possibility, since they satisiy a dispersion relation similar to the ion sound
waves. Hence it may be possible for acoustic waves to couple with the torsional Alfven
wave and excite the kink modes.

8.4 Alteration Of The Current Profile In The Arch

Let us examine mechanisms and perturbations that will alter the current-density pro-
file of an existing arch, assuming it is still evolving. The simplest types of perturbations
that immediately come to mind are those perturbations that satisfy k*B = 0, i.e., pertur-
bations which are slowly varying in the toroidal directions. One such mechanism is a
magnetosonic wave generated by perturbations external to the arch. For example, if a
Moreton wave generated by another flare were to strike the arch, it could very easily give
rise to magnetosonic waves propagating perpendicular to B which could compress the
magnetic surfaces, exciting the tearing mode, or which could cause the arch to kink.

An alternate mechanism, using magnetosonic waves, is the conversion of Alfven
waves into magnetosonic waves, as the Alfven waves propagate along the twisted field
lines of the arch. This requires the wavelength of the original Alfven wave to be less than
the local or gilobal curvature. Such a mechanism has been proposed by Wentzel (1974) as
a source of heating in arches. The wavelength of the Alfven waves required are such that
A < R andfor A < rB%./Bz. We will comment more on this later. However we are
interested in all perturbaﬁons that have long wavelengths parallel to B along the arch so
that thermal conduction will not play an important role, thereby permitting resistive
instabilities such as the superheating instability to occur, which we consider next.

As shown in Section 4, the superheating instability is a resistive instability that grows
only when k,— 0, i.e, k*B = 0. Thus, when this instability does occur, the current
density within the singular layer will grow. Assuming the resistivity is classical, the con-
dition for growth is

& dQ
-0 .
20,T ~ dT,° (8.14)

where @ = P4 and we have neglected the kzx2 term due to thermal conduction per-
pendicular to the field lines. Rewriting Eq. (8.14) as

P
j 2P
2y nd (8.15)
) 3
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Fig. 27 — The radiated power function of the solar
corona (McWhirter et al., 1974) The power radiated per
unit volume is ngn(H)P,, 4 ergs/em3 s.

where Py = n%f(T), we can obtain f(T) from Fig. 27. Since j, = enyv, we can rewrite
Eq. (8.15) as

3.77 X 1032

= 2TZB(eV)A(T) VAT

va >£‘:—" (8.16)

e'n
Note that the condition for growth expressed by Eq. (8.16) is independent of density.

An examination of the radiation power function for the solar corona (Fig. 27),
shows that thermal instability is most likely to occur when T 2 105 K, which comre-
sponds to f(T) = 3 X 10-22 erg/cm3 s. Inserting these values for T and f(T) into Eq.
(8.16) shows that vy; > 4.98 X 105 cm/s, if the superheating instability is to occur. Re-
quiring a number density of 1012 em3, yields a current density around k*B = 0 of
jr=24X 108 statamperes/cm2, which is very nearly the value found to be necessary to
explain the energy release of the flare by the tearing mode. This corresponds to a
growth rate for the superheating instability of y = 2.07 X 107! 1-5 or one e-folidng time
of 4.8 s. If the arch had a lower number density, for example at its outer boundary, it
would have a correspondingly lower critical current density and growth rate. For example,
if n =109 cm"3, we must have j,, ® 2.39 X 10% statamperes/cmz, which is close to the
value reported by Title and Andelin (1970). The superheating growth rate would be
y=2X10° 4 -1, or one e-fold time of 1.34 hr. Since superheating will cause the
temperature to increase, it will produce a temperature gradient across k*B = 0 such that
the resistivity gradient will have a minimum there, which is one of the criteria for the
rippling-mode or current-convective instabilities. Assuming the rippling mode is excited,
we find that for the adopted values of B, g, n, and T the limits on the growth rate for
the rippling mode lie within the range (9 < v < 7.43 X 102) s~1. Hence, this mode can
greatly enhance the growth of the current within the singular layer before it saturates.

To excite these modes again requires perturbations that satisfy the condition k*B = 0.
As already noted, magnetosonic waves can accomplish this by bringing the temperature
around k*B = 0 above = 10% K. Thus in this model the mechanism that Wentzel (1974)
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has suggested to heat the arch may trigger the flare. An alternative to this possibility is
the long-wavelength (= 105 km) photospheric horizontal waves observed by Tanaka (1972)
prior to flares. Mullen (1973) has calculated the energy flux associated with these
oscillations and finds an energy flux &q,, ~ 2 X 1010 ergs/cm? 5. Using the observed
flaring-arch length of 5 X 108 cm, the possible maximum total power that can be trans-
mitted to an arch is ~ 40 ergs/cm3 s, which is of the same order as the radiation losses if
n = 1012 ¢cm-3. A density less than 1012 cm~3 would lead to a heating of the arch,
especially at the outer boundary.

This wave energy input could occur in the following way. Assume that these
photospheric waves modulate the tension of the magnetic field in the arch. If the modu-
lating period of the photospheric waves is T, and the natural frequency of the arch is 2,
and they together satisfy the condition

QT=nm(n=1,2,3,..), (8.17)

then the photospheric oscillations can result in an amplification of the natural modes of
the arch by parametric excitation (Minorvsky, 1962). In general one natural mode of the
arch will be the Alfven mode, whose amplitude can be increased through energy input by
the photospheric pump. Since T = 27/w and £ = kv, , we have from Eq. (8.17) w =
?J!lvA [n. Assuming higher frequency harmonics of the photospheric waves exist, we can

write w = wym, m = 1 corresponding to the fundamental harmonic. Then w = 2k,vs /mn.

In general, v, is large for an arch and is about 107 or 108 cm/s. Since the waves
reported by Tanka (1972) had a period of ~ 300 s, we find wg = 2 X 1072, and it
follows that the excited Alfven waves correspond to very long wavelengths parallel to B,
or the pump waves correspond to very high harmonics, and/or a combination of these
possibilities. With the excitation of these Alfven waves, we can then invoke the mech-
anisms discussed by Wentzel (1974) for decay of Alfven waves into magnetosonic waves.

In the derivation of the superheating instability, no allowance was made for the
coronal heating mechanism. This was neglected simply because the coronal heating
mechanism is poorly understood and its inclusion during the derivation would only com-
plicate matters. However the coronal heating will act as a driving term if (defining the
coronal heating by the function C(T)) dC/dT > 0; i.e., the coronal heating can actually
excite the superheating instability, particularly if the electrons are preferentially heated
over the ions.

Unlike laboratory pinches, arches in the solar atmosphere have a cold core and a hot
sheath (Foukal, 1975). We should therefore expect the superheating and rippling modes
to be most easily excited within or near this sheath. This should occur for two reasons:
first, the density will be lower there and more susceptible to thermal instability; second,
the resistivity gradient will be negative as one moves toward the hot sheath, which means
the current density will have a maximum in the sheath. Such a circumstance is highly
unstable to the double tearing mode (Furth et al., 1973), as we will soon discuss.

The formation of this peaked current profile will compete with the mechanisms for
current penetration discussed in Appendix B. The first competing mechanism to be con-
sidered is that of normal thermal conduction, perpendicular to the field lines. Earlier we
ignored conduction perpendicular to B, We were justified then because, as noted above,
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arches are typically observed to have hot sheaths; hence, the thermal conductivity would
be inward and will only enhance the superheating instability initially. However, as the
temperature gradient builds due to the increased joule heating, the increased temperature
gradient could stop the growth of current due to increased conduction out of the region
of instability and into the cooler core. During the rise of j, the electrons and ions are
not very well coupled by collisions, particularly in the low-density sheath, where the
collision frequency is further reduced. Hence the only means by which heat can be con-
ducted inward is by electron conduction, the ions being no longer well coupled to the
electrons. We therefore need to compare the joule heating terms with the electron ther-
mal conduction perpendicular to 8.

Using the results of McBride et al. (1975) for a similar situation, we find BZ > (R/a)z,
where §, = (8,2, [8ankT, )"1. If this condition is satisfied, thermal conduction will stop
the current runaway. Since normally Bp < 1 in the solar atmosphere, and since Rfa > 1
for an arch, thermal conduction is not expected to inhibit the growth of the current
sheath by the resistive instabilities discussed.

The other current penetration mechanism of importance is the low frequency
electron-temperature-gradient drift wave instability, which is important when the tempera-
ture profile is the inverse of the density profile (Kadomstev, 1965; Lui et al., 1972). This
mode requires the magnetic shear to be sufficiently weak so as to not damp the mode.
The condition for instability is expressed as

3/2 2,2 1/2 1/2
1+E>h <-£"—+1+T£ EyPi (e QnTif'-'l ,  (8.18)
Te/\L, 2Ly T; V2 \" mg\L,
where L, ~ 2.39 X 10° B, /jr, L, = (n"1dn/dr)™?, and Ly, = (T;1dT,/dr)"!.

To see if the condition for this mode can be satisfied, we assume the gressune profile
is force free, i.e., |[Ly| = IL,| = ry. Equation (8.18) shows that when |L,| < IL,|, the
condition is most easily satisfied. Taking L, = L, =~ ry, we find

T, T\ k2p2
5.23<1 + #)<{é +<1 + -,I—,9> —1—'-] (8.19)
e i \/.2

Since p ~ 0.81 cm and k,, =~ m/ry, we find p2k2 << 1, and Eq. (8.19) reduces to
5.23(1 + T'./Te) <1/2. However, since T, /Ti >§ 1 by assumption, this relation can never
be satisfied, and it appears that unless the shear length is such that L, >> L, in an arch,

this condition is almost impossible to satisfy.

Apparently once the current runaway begins, there is nothing to stop the buildup of
current in the hot sheath of an arch except MHD kink and resistive kink instabilities or
current-driven electrostatic instabilities. Using the condition j R/cBy < 1 and the thres-
hold conditions for current-driven electrostatic modes given in Appendix B, it is easy to
show that MHD kink and resistive kink instabilities have a much lower instability thres-
hold than current-driven electrostatic instabilities. Thus we expect the MHD kink and
resistive kink instabilities to occur in the arch long before the bulk current could ever
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become electrostatically unstable. These macromodes will then flatten the current profile
by releasing the energy in the form of a flare.

The peaked current profile, caused by the mechanisms discussed above, is particularly
unstable to macromodes, because k*B = 0 can vanish on either side of the peak. This is
because qar/B, is a double-valued function of r. This can be seen using the skin-current-
layer model (lgurth et al., 1973) b = x3/(1 + x2)2. where b = B,(r)/IBl, x = rirg, and rq
corresponds to where x = 1 and measures the current shell wxdtﬁ

A more dramatic form of the tearing mode, in which multiple tearing should occur,
follows from the force-free Bessel-function model considered in Section 4 and the helically
symmetric three-dimensional solutions obtained in Section 5. To see this, we first note
i(r) = a(r)B(r). In equilibrium Jp is proportional to B = ByJ(or); hence j
(ca/41r)B J (ar). Thus ip will be alternately positive and negative, permlttmg multiple
tearing on elther side of the local current peaks and wells. This type of current distribu-
tion is particularly susceptible to overlapping resonances because of the neighboring
resonant surfaces where k*B = 0. Such a situation would easily occur in arches with
return currents, since the currents will change sign at various minor radii.

8.5 Site Of Initial Current Buildup

We have so far argued that a sequence of resistive instabilities will occur in the hot
sheath of current-carrying arches. We would also like to consider where along the arch
the growth of these instabilities will be most rapid and thereby locate the probable site
of the initial current buildup. To do this, we make the reasonable assumption that the
arch has a transition zone within each leg much like the ambient atmosphere in which the
arch is embedded. Where the temperature minima occur within each leg of the arch need
not be the same as the altitude of the temperature minimum in the ambient atmosphere
(due to more concentrated wave heating within each leg). However we will further
assume that these minima occur within the arch at altitudes similar to the altitude of the
temperature minimum in the ambient atmosphere. These assumptions necessarily imply
that a steep temperature gradient exists within each leg of the arch around each minimum.
Such a gradient alters one of the assumptions that was made in deriving the dispersion
relation for the superheating instability: the temperature was not a function of height.
When this assumption is relaxed, three new terms appear in the dispersion relation given
by Eq. (4.128), which now has the form

0k2 0k2 ax?kl R ax? azTo axok aT (kl2 - ku2)

=- - — e T Y E a4 '

w(z) = - ix; ix; pye i 3Ty 3oz 5T, 92 v, +iv, _.__—kz
(8.20)

In the limit k, - 0 a term remains in (8.20) whlch is proportional to 82T, /922 and
acts as a driving term for the instability if 62T /822 > 0. Physically this is to be ex-
pected. As an electron that is driven by an electnc field moves through a region where
both the temperature and temperature gradient are increasing, the electron’s mean free
path is likewise increased, and the electric field can act on the electron for longer intervals
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of time between collisions. The greater ¢ 727‘ /322, the greater the effective runaway.
Hence, because a2'r 1922 is positive for a current with a drift velocity moving in the
same direction as T0 is increasing, and because F)ZTO /322 is greatest in the transition zone,
the superheating instability should be expected to have its greatest rate of growth there.
A'though we have not treated the density decrease with height in the arch, this decrease
in n will have an effect similar to an increase in Ty. From this we conclude that the
origin of the initial preflare heating, by the mechanisms discussed, is in the region along
the arch where the transition zone occurs. This may be along the leg of the arch or at
its top, depending on the height of the arch and the heating mechanism causing the
temperature gradient. Again it appears within the context of this model that the coronal
heating mechanism may be related to the origin of the flare.

Other mechanisms that can lead to this form of current runaway are a gradual twist-
ing of the field, a gradual shearing of the field by lateral foot motion, or a transient EMF
along B of unknown origin. The first two occur because the current is steadily increasing
and at some stage will start to run away by the combination of resistive instabilities and
the external current driver. We expect shearing to be important as a precusor effect,
because as discussed in Sections 4 and 5, large shear will actually increase the likelihood
of the tearing instability. The effect of a transient EMF on j, is obvious.

A modification of the basic superheating instability could occur, if there were an
electron beam stably trapped in the arch, since this beam could lead to an increase in bulk
resistivity in the presence of an electrostatically stable current by the mechanism of
Papadopoulos and Coffey (1974a, 1974b). Hence, since this resistivity is a bulk resistivity,
the joule heating would increase in its presence. This increase in joule heating would then
lead to more electron runaway, which then feeds the heam that generates the anomalous
resistivity. [If this proposed mechanism were to occur, a self-sustaining nonlinear feedback
mechanism between current and beam could lead to the current buildup desired. Earlier
we found that this mechanism increased the resistivity for the adopted parameters by 102,
In addition it was noted in Section 6 that this mechanism was most effective in increas-
ing the resistivity in regions of lower density, which in an arch would correspond to the
arch apex and within the hot sheath. Thus the mechanism fits into the sequence of
instabilities discussed earlier, where the resistivity was assumed classical. The increase in
n by 102 will lower the required jr by 10 for the onset of the superheating instability.

Since this mechanism requires a beam of electrons, we must find a source for such a
beam. The most obvious and most reasonable source of such a beam would be the run-
away high-energy tail of the electron current distribution function. The number density
in the tail of a Maxwellian is obtained by integrating the ambient Maxwellian from v, to
infinity, obtaining

(8.21)
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Taking v * 3ur,, we obtain ny/n = 2.95 X 1073, Since n =~ 1012 cm™3, we find np =~
2.95 X 109 cm-3, which is 103 times larger than the number of electrons required to
form the beam as calculated earlier from Eq. (6.19). Hence, only 103 of the tail electrons
need to run away to form the beam.

8.6 Location Of Initial Instability In The Arch

Although we have examined where the most probable initial current buildup should
occur, it does not necessarily follow that the flare instability should start there. Indeed
as shown in Appendix A, the safety factor will be a minimum at the apex of the arch,
assuming the toroidal component of B is the same in both legs. In general however Bp
in one leg will not necessarily be the same as in the other. Thus, it follows that ¢ will
have its minimum, as a function of the toroidal coordinate, at different locations for
different arches. However, since jr will have its greatest growth in the transition zone of
the arch, one should expect the instability to start somewhere between this region and
the apex of the arch, assuming that the transition zone does not coincide with the top of
the arch and that By is the same in both legs of the arch. For any other set of circum-
stances the picture becomes more complicated, and an accurate prediction can be made
only when the physical details of arches become known.

9. PHENOMENOLOGICAL ASPECTS OF THE FLARE MODEL
9.1 Introduction

This section will be devoted primarily to explaining various flare phenomena and to
generalizing the model. During the subsequent discussion we will at times devote our
attention to answering questions raised by Svestka (1975) as they pertain to the flare
model developed here. It is hoped that in this way the model and its expected effects
will become clearer.

9.2 Some Speculations On The Role Of Instabilities
In Other Solar Phenomena

We start by emphasizing that any magnetic topology which contains a current and
has magnetic shear should be susceptible to just about every instability we have dis-
cussed. This should include x-ray bright points, filaments, GRF events, and loops in
general. This will help in understanding the relationship between flares and filaments.

It is well known that filaments exhibit a helical magnetic field structure, appearing
to unwind at times and exhibiting a winking effect, in which the filament acts as if it
were moving up and down (Tandberg-Hanssen, 1974). In the context of the instabilities
discussed here the helical structure should result from a current, and the magnetic rope
effect common to filaments is the result of slowly growing long-wavelength resistive-kink
modes generating helical magnetic islands. The slow growth is a result of the weak
magnetic field and weak driving gradients in the filaments, and the unwinding results
from kink instability. The winking may be self-induced or caused by a disturbance
enamating from a flare, e.g., in the form of a shock striking the filaments. As noted
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earlier, a shock striking an arch can result in perturbations which vary slowly along the
arch and thus excite MHD and resistive kinks. A similar situation should occur in a
current-carrving filament. The frequency of the kinking can explain the winking fre-
quency (= 10-3 s; Tandberg-Hansson, 1975). The excitation of the kink mode, in the
filament, can cause an internal global kink to rotate at the electron diamagnetic drift fre-
quency, which arises due to a V, = cE,/B, rotation of the kink. Taking E, = kT/é¢e
and v, = wr,, where r, is radius of the kink with respect to the magnetic axis of the
filament, we find v, = ckT/2med¢r, B,. Using the values given by Tandberg-Hansson
(1974) typical of a filament, i.e., B, = 10 gauss and 7 = 105 K, we find §¢r, =~ 1010
cm? is necessary for the frequency of rotation to be of the order 1073 s-!. This effect
should appear as a helix slowly rotating within the filament and thereby giving the effect
of winking.

The postflare loops present another situation. These loops appear to have relatively
high altitudes and appear to be excited by the flare. If currents existed in these lcops,
one would expect behavior similar to that which occurs in flare arches, although with
much less dramatic effects. This follows hecause the weaker are B and its gradients, the
slower the growth rates. Thus to heat the loops and to keep them hot requires

2
1By | TekTevr, ©1)
87 L

Because L is very large, = 5 X 10% cm, and n is small, < 108 cm™3, it does not take a
great deal of energy to heat these loops and to maintain their high temperatures (= 5 X
10% K). This would explain the long duration of heating in these loops, the appearance
of high energy particles, and their subsequent rapid cooling. Their excitation also may

be shock induced.

9.3 Expected Observational Characteristics Of The Model

As seen in Section 8, our flare model is intrinsically associated with preflare effects,
which dictates whether a flare will or will not occur. What then is the expected
phenomenological behavior of this model? Essentially two types of arches are to be
considered: the emerging arch and the preexisting arch. The emerging arch is difficult to
treat. Hence, while we consider them as potential candidates for flaring, we will confine
our discussion to preexisting arches.

Preexisting arches will flare if one can alter the magnetic shear sufficiently to trigger
the MHD kink and resistive kink modes. In addition the magnitude of this shear will
determine whether the flare will exhivit weak or strong impulsive behavior in the form of
nonlinear overlapping resonances and global kinks. Further, we have found there exists
hasically two means by which the shear of the field can be altered, namely a steepening
of the current-density profile by either transport mechanisms or transient phenomena.
Alteration of the current-density profile by transport mechanisms was shown to be closely
related to mechanisms that are helieved to heat the corona. Hence we expect this type
of mechanism to result from a preheating of the arch, i.e., the flux of waves believed to
heat the corona must he increasing in the arch, thereby altering the current-density profile
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by the resistive modes discussed. Logically there is no reason why one arch should be
singled out from other arches in an active region during this increase in wave flux. Thus
we should expect preheating in all arches. If this is the case, why should a few arches
flare and not all arches in the active region? The answer is that preheating, and the sub-
sequent current density profile steepening, is only a part of a sequence of events which
ultimately leads to a flare. The preheating prepares the arch for flaring, and the transient
motions provide the final push necessary to start the flare. This oceurs because the cur-
rent steepening will be halanced by the weak dissipation of the current, when the shear
becnmes steep enough to excite the tearing mode, so that the system will evolve into a
state of marginal stability. During this period an increase in heating will occur, above
that due to the preheating. In addition impulsive behavior may occur due to weak kink
modes. The actual onset of the flare will occur when either an extemal transient pro-
vides the push or the arch itself nonlinearly evolves into a strong global kink. The global
kink will result in the effects discussed in Section 7. Some possible transient effects that
may push the arch into instability are illustrated in Fig. 24.

With what has been said, what should be observed? Ovbiously a general preheating
of the arches in the active region should be observed. This preheating should be
particularly strong in the transition zone, because most of the wave flux will dissipate
there. The arch should appear to brighten substantially, particularly the plasma boundary,
which should sharpen with time; this occurring over a period of hours or minutes, as

s shown in Section 6. If the preheating is maintained for the proper interval, an extended

) burst and possibly weak IEBs should appear. This period orresponds to the marginal
state just discussed. Two things can now occur: the arch rray remain in a marginal
state until the heating source is shut off and the current pro.ile relaxes or the arch may
flare, being pushed into flaring by some transient phenomena

What occurs during the actual flare is difficult to state precisely, since the evolution
of each flare is highly nonlinear and thus unique. However we can heuristically discuss
the general sequence of events. If the flare is thermal, in the extreme sense discussed in
Section 7, very little dynamic behavior will occur as far as the arch is concerned. The
volume of energy release will generally be small compared to the total-volume field energy
of the arch and will be situated in the leg of the arch where the current flows parallel to
the temperature gradient. The localized energy release will cause heat to diffuse out of
the heated region, increasing the volume of apparent instability. Hence, from an observa-
tional point of view, there will be a small core or cores of hot plasma surrounded by
decreasing temperature gradients; i.e., the flaring arch will have a multithermal structure.
Since the rate of energy release is slower, we expect any shock waves excited to be weak,
if they are excited at all. We expect these flares to occur in arches with larger volumes
or densities than those in which the impulsive flares which release an equivalent amount
of energy occur.

The nonthermal impulsive flare is similar to the thermal flare, except the rate of
energy release is much greater and strong resonant overlap can occur as well global kink
modes. We can then expect strong hlast waves and strong bursts of impulsively heated
and accelerated particles. Figure 28 illustrates the bhasic sequence of events if the flare is
excited by external heating mechanisms.
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Fig. 28 — Example of events that can lead to a flare

9.4 Blast Waves and Their Effects

Since the impulsive flare in this model releases energy so rapidly from a small volume,
we expect strong blast waves to occur. Under these circumstances we expect the blast
waves to seriously disrupt the solar atmosphere, leading to many secondary effects which
can confuse an observer’s interpretation of the observed chain of events. Hence we
examine here a number of effects we expect to occur during a nonthermal flare.

To begin, we emphasize that the rate of energy release in this model is the key
ingredient for understanding the various phenomenological aspects of flares. Thus,
because the release of energy occurs in a reasonably small volume, <1023 c¢m3, and the
rate of release is = 105 ergs/cm3 s, we expect the energetics of such an energy release to
behave like a strong explosion from a small source for the most impulsive of flares.
Hence an examination of how such an energy release will behave in the solar atmosphere
is appropriate. We will discuss basically three variations of this energy release: the
release as purely isotropic (i.e., initially, we will ignore the attendant magnetic fields), the
release site as surrounded by a domelike magnetic field (i.e., the field will attempt to trap
the energy release); and the release site as set between two magnetic walls whose field
lines may open at higher altitudes.

Consider an isotropic release: what effects are to be expected? The answer is
intrinsically related to the rate of energy release and to the fact that ihe solar atmosphere
is exponential. The greater the release rate, the more accurate will be our conclusions.
We assume the rate is sufficiently fast that it completely overwhelms all energy sinks,
thereby causing a strong blast wave.
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As is well known, such an isotropic release will initially yield a spherical blast wave
which shortly thereafter will distort, due to the exponential atmosphere. An ascending
and descending shock will occur. The descending shock will quickly decay as it
encounters a higher density plasma. The ascending shock will eventually lead to a blow-
out: i.e., the shock front reaches infinity in a finite time (Bach et al., 1975). The ascend-
ing shock will behave as a snowplow, concentrating most of the plasma mass near the
shock front (Laumbach and Probstein, 1969). The descending shock will heat the high-
density plasma, which then expands into the volume depleted of mass by the ascending
shock. Thus a heaving of colder and denser plasma into higher altitudes will occur. This
denser plasma will convectively mix with the lighter ambient gas by the Rayleigh-Taylor
instability, leading to turbulent mixing. In addition the expanding blast will lead to
Kelvin-Helmhotz instabilities at the front of the expanding blast wave, resulting in velocity
shear there. This will result in a turbulent mixing interface expanding with the front
(Boris et al., 1975). The addition of an envrloping magnetic field alters the hehavior of
the ascending blast wave. The bhlast wave will expand until the additional stress of the
magnetic field becomes dominant.

Before proceeding, let us make some semiquantitative estimates on free expansion,
in order to compare the magnetic-field-inhibited expansion. As is well known
(Zel’dovich and Raizer, 1966), the expansion of the hlast wave is governed by the environ-
mental density. That is, at what altitude will the total mass of the plasma that collides
with the blast wave above the energy release site equal to exceed the mass carried by the
snowplow blast wave? Because the density in the solar atmosphere varies exponentially
with altitude, the momentum-conserving expansion of the blast wave has a velocity

VM
V(9) = = , (9.1)
M+ f 4np(0)? dr]
L 0

where R is the maximum radius of expansion, M is the total mass carried by the initial
pressure pulse, V is the initial velocity of expansion, and 0 is the angle with respect to
the vertical. Here

(9.2)

rcos
p(0)=poexp(- T )

where H is the scale height kT/,, ., and pg is the ambient density outside the arch from
which the pressure pulse originatés. The shape of the blast wave at some time ¢ is

"
R(0) = | V(0) dt. (9.3)
0

If we examine the shape of the blast wave at a time R(0) >> h, we can obtain the
approximate altitude above which free expansion will occur. Free expansion will not
occur if
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f amp, exp(— l C;;s 0 ) r2dr>> M, (9.4)
0
which yields for R(0, t)
VotM cos 0
R, t) = ——u— (9.5)
87H3p,,

for 1 - cos 0 < H/R(0). Thus free expansion occurs at a density
ng =~ M/(m81H3) (9.6)

If we demand the initial mass carried away by the snowplow pressure pulse is of the
order 1016 g, which is of the order observed ejected during impulsive flares, and choose
T = 106 K for the average corona temperature, we find H ~ 8 X 109 ¢m and thus ng =
5 X 108 cm=3. Since observationally ng ~ 5 X 108 cm-3 is found at an altitude less
than 8 X 109 c¢m, our approximation is invalid, and we conclude that the observed mass
ejected by the flare is either swept up by the snowplow or ejected in the form of plasma
blobs caused by mechanisms other than the flare, although possibly excited by the flare.
We also conclude that the expansion is never free. After the blast wave has dissipated
itself, the heated bubble formed by the blast wave will expand upward through the
ambient atmosphere if it has a volume of the order 47H®/3, since otherwise the mass
density above the bubble will be greater than that in the bubble, thus preventing upward
expansion.

If we neglect the presence of the ambient plasma, we expect the blast wave to simply
blow a diamagnetic hole in the enveloping magnetic field if R > v, /2. Thus a magnetic
bubble will form and expand until the work done against the magnetic field equals the
kinetic energy associated with the pressure pulse; i.e.,

2nR? B? 3=¢ 9.7
S flare * *

Taking €, . =~ 1032 ergs and B ~ 20 gauss yields R =~ 5 X 109 cm. Hence the bubble
will appear to have a radius of =5 X 10°. The ambient magnetic field will be compressed
during this time by an amount such that its pressure equals the time rate of change of

the momentum of the blast wave.

During the expansion against the magnetic field, a Rayleigh-Taylor instability may
occur as the high density plasma carried by the snowplow is pushed against the low-
density ambient plasma. The growth rate for a perturbation of wave number k is y =
(Rk)1/2, which will have an amplitude A = Ag exp(yt), where R is the acceleration .
associated with the snowplow. For linear decceleration taking place in a distance R, R =
2R/t and ¥ = (2Rk)1/2/t, which yields an amplitude A = A, exp[(2Rk)!/2]. In the
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nonlinear limit, i.e., A = a/k, the plasma and field will be irreversably mixed (Book,
1975) and the plasma will propagate by convection across higher and higher magnetic
surfaces.

For convection to occur beyond the initial magnetic surface struck by the blast
wave, the wavelength that requires the fewest e-foldings of growth to reach an amplitude
greater than n/k is needed. The required wavelength will correspond to the blast wave
radius of curvature R at the shock-field interface; the wavelength A = R/, 1.e., k = 272/R,
will have an amplitude of order n/k, so that one e-folding can take place within the non-
linear limit, and the plasma will penctrate the field with a mixing length ¢ ~ R/n. The
plasma after being convected across the field will then expand parallel to the magnetic
field, since less stress is exerted in the parallel direction.

If the blast wave strikes the overlying magnetic field at its weakest point, the plasma
will expand horizontally along the field lines and fall downward into the chromosphere.
On the limb this will appear as a slowly expanding hemisphere, the plasma propagating
across the field lines at the nonlinear free-fall rate of R. If the blast strikes the overlying
field near where it is essentially vertical, the plasma will convect inward and move up-
ward, away from the strong vertical field, into the weaker horizontal fields. If the blast
wave has a large component of velocity parallel to the vertical field, the plasma will
stream to the conjugate point of the overlying field; otherwise it will fall back. The
momentum impulse transferred to the field will make it oscillate. In particular, if the
field is vertical and open, the field may whiplash about in a manner similar to what occurs
when a wave propagates out along a string with a free end. Under these circumstances a
disturbance can propagate far out into the corona.

Next we consider what occurs if the release point is sandwiched between two vertical
fields or possibly two large arches. The blast can again generate diamagnetic bubbles,
field line whipping, and large-amplitude hydromagnetic waves moving along the field lines.
The blast however can escape into the high corona in this situation, triggering other dis-
turbances which we will now consider.

We make the reasonable assumption that high in the corona trapped particles exist
mirrored between conjugate magnetic mirrors. What will occur if denser plasma is ejected
up by the blast wave into these regions along field lines? As is well known (Kennel and
Petschek, 1966), there is a limit to the number of particles that can be stably trapped,
due to whistler and electromagnetic ion cyclotron modes. This limit corresponds to
electrons (and protons) whose energy exceeds an energy threshold which is comparable
with and scales as the energy density of the magnetic field and inversely as the electron
number density, i.e., BZ/8wn. If it is assumed (Brice, 1970) that the threshold energy E.
is much greater than the characteristic energy of the particles, most of the particles are
not subject to the trapping limit. If plasma of higher density is injected into the stable
trapping regions, the threshold energy is reduced from E to Ep. Thus electrons with
energies between E1 and ET will be subject to the trappmg limit, and the electrons and
ions will try to reduce the new electron flux, pushing E back to E7. This will occur by
pitch-angle scattering and precipitation (Kennel and Petschek, 1966) into the lower solar
atmosphere.

Since the resonant threshold energies scale as B2/8nn, and B2/8mn will generally in-
crease rapidly near the mirrors, 82/81m will probably have -« minimum near the avex of
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the trapping region. Hence a given wave will encounter the greatest number of particles
with energies appropriate for resonance at the apex. For example, if the wave is a
whistler, the resonant energies for the whistler are (m;/m, )32 /8nn for ions and (82../
wpe)B2/8an for electrons. Taking B > 5 gauss and n ~ 107 em=3 yields B?/8nn =
9.92 X 107! and £2,./w,, = 4.93 X 107!, which implics the wave will resonate with
trapped 30-keV electrons and 113-MeV protons. Thus, if particles of these energies are
stably trapped in high-altitude arches, they can easily be brought down by injection of
denser plasma.

An alternate means to cause particle precipitation is for a shock to strike a trapping
region. The shock can excite the various crossfield microinstabilities, collected in
Appendix B, which will result in a strong momentum coupling hetween field and particle
perpendicular to B, the coupling due to these cross field instabilities being weak parallel
to B. Thus the energy of these particles will be predominately perpendicular to B, which
can lead to strong bursts of cyclotron radiation. However under such circumstances T, /
T, will be >> 1, T, being the temperature perpendicular to B and T, being the tempera-
ture parallel to B. As is well known, the condition T, /T, >> 1 can result in electro-
magnetic ion cyclotron and electron cyclotron (whistler) waves (Kennel and Petschek,
1966) which tend to quickly isotropize the temperatures. Thus perpendicular energy is
rapidly converted to energy parallel to B, and one expects the following sequence of
events (Clark, 1975):

1. Part of the energy, associated with the blast wave propagating perpendicular to B,
is converted quickly to random energy perpendicular to B by the crossfield electrostatic
instabilities collected in Appendix B.

2. The resulting hot electron and ion temperature is extremely anisotropic, i.e.,
T, /T, ;y >> 1 and, as such, is unstable to electromagnetic ion cyclotron and whistler
waves, which grow and reduce T, /T,.

3. Since the crossfield electrostatic instabilities result in strong momentum coupling
perpendicular to B, T;,, increases preferentially. However particles with large |V, /V,|
will tend to stream along B, escaping into the loss cone of the mirror. Under these
circumstances an electron and ion loss-cone instability is established (Rosenbluth and
Post, 1965; Davidson, 1972). (We have assumed an electron loss-cone instability may
also be excited.) This occurs because, in a mirror field, electrons and ions with large V,
stream into the loss cone more rapidly than they can be replaced. Thus a hole in velocity
space occurs corresponding to a depletion of V, particles.

4. Electrostatic fields, driven by the loss cone distribution function, will preferentially
pitch-angle-scatter particles with high V, into the loss cone in an attempt to replace the
depleted V, particles.

5. The system will then reach a state of marginal stability, and a steady state drizzle
will occur in which particles stream down the trapping arch into the conjugate mirrors,
illuminating the corona and chromosphere.

The illumination due 1o precipitating particles will differ at conjugate mirrors of the
trapping arch. We know a particle with pitch angle « is related to the mirroring field by
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sin®“ a = B (9.8)

where B, and By, is the magnetic field strength at the trapping arch’s apex and at one of
its mirror points respectively. Let Byj and B,,, denote the field strength at each mirror
of the trapping arch. Then, since By/By << 1, we have sin o =~ «; thus

B,\!/2
a = <m> (9.9)
and
BO 1/2
a, = (@) (9.10)
Thus the ratio of the loss cones is
1/2
R(a) = (%I-A—’> / . (9.11)
M

Therefore, if Byy >> Byy, the loss rate in the second mirror is much greater than in the
first. Hence the second mirror will be illuminated by the appropriate factor due to the
greater precipitation.

We have endeavored to show by reasonably simple arguments that the release of
energy by an impulsive flare can literally raise havoc in the ambient solar atmosphere,
leading to many secondary manifestations of the flare which, disturbingly, can mask the
principal energy release and thus lead to incorrect observational conclusions.

Now we compare these effects with observations. First we identify the ascending
shock produced by the pressure pulse with the type II radio burst. When the shock
moves through overlying magnetic fields of sufficient magnitude, it will excite electrostatic
instabilities which increase the electron thermal energy perpendicular to the magnetic
fieid. For example the shock can excite the beam cyclotron instability, which then evolves
into the jion-acousti~ instability; both will heat the electrons so that V, will become
extremely high. The heating rate is of the general form

Tf =m,u Uy - U)o (9.12)

Since v, is large, T will increase rapidly. Thus, because cyclotron radiation losses are
proportional to (§2,.v, )2, one should expect strong cyclotron radiation as the shock wave
moves through the magnetic field and forms a diamagnetic bubble. This radiation we
identify with type IV bursts. A number of obvious consequences follow from this. First,
because n and B are pushed along by the snowplow, one should expect this radiation to
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start immediately after the impulsive phase, if a magnetic field exists above the flaring
arch, and to become stronger with time as n and B increase and finally decrease as the
blast wave energy is spent. Also, the excitation of loss-cone instabilities are a possibility,
giving rise to trapped electrons and protons mirroring back and fourth within closed field
structures. Further, a type IV burst may occur with or without a type II burst, and vice
versa. This follows because B may be so large that the shock might be spent before
exciting the type II burst, or B may be so small that the type IV burst would be
unobservable.

The ability of the blast wave to excite Rayleigh-Taylor instabilities and thus cause
plasma to be convected across field lines can explain the commonly observed rising
mount on the limb, which exhibits the successive filling of flux tubes that the blast-
driven. Rayleigh-Taylor instability would cause. We believe the rising mount to be the so-
called flare loops, blown out by the blast wave. Since the plasma will move out of the
field region formed by the blast, it will stream down into the chromosphere, forming the
flare ribbons. The moving apart of the flare ribbons is identified with the fact that the
blast wave will convect plasma into higher and higher field lines. Thus the plasma stream-
ing down the field lines will be coming from field lines which have a greater distance
between them in the chromosphere. One should expect the flare ribbons to drift fastest
at blast onset and slow down to a value corresponding to the velocity of field filling by
convection. Hence the rate of expansion of the rising mount on the limb should be
similar to that of the ribbons (Fig. 29). The drift of flare ribbons may be evidence for
expansion of flare loops (Problem 2, Svestka, 1975).

One can make predictions associating type IV bursts, the rising mount, and flare
ribbons. We should expect because they are related here by the blast wave, type IV
bursts will geverally occur when flare ribbons and rising mounts are observed, if the
blast wave has sufficient energy. However flare ribbons and rising mounts need not occur
in all flares if there is no enveloping field or if the flare generates only weak blast waves.

If the blast wave were to obliquely strike a vertical magnetic field, which is open or
highly divergent with altitude, we expect an ejection of plasma out along the open field
lines (Fig. 30). This we identify with the so-called spray. Hence a spray should be
associated with a blast wave, if this is to valid, and the velocity of the spray should be
some fraction of the blast-wave velocity. The greater the component of the blast-wave
velocity parallel to B, the greater the spray velocity. Also only one flare ribbor w-ould
be formed. Here we have shown that a direct relationship exists between spray and blast
wave (Problem 31, Svestka, 1975).

9.5 Svestka's Problems

Using the model developed, let us answer the various questions raised by Svestka
(1975) where applicable and possible:

® Problem 1. This question is related to the complexity of the active region, the
type of (flare nonthermal versus thermal), and the frequency of flares. Within the context
of this model the frequency of flare occurrence and its type is clearly related to the
number of available current-carrying arches or other similar magnetic topologies. Hence,
since there occur observationally a larger number of arches in a complex active region as
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opposed to simple bipolar region, statistically one should expect a greater number of
flares occurring there as well as sympathetically triggered there, i.e., a domino effect. In
addition, one should expect this increased sampling would make it appear that a larger
number of nonthermal flares should occur in complex active regions.

Our ignorance of the origins of active regions, and thus what makes one region more
complex than another, argues in favor of a greater reservior of energy from which to
drive nonthermal flares. The continued birth and death of magnetic structures within an
active region also argues in favor of dynamic evolution deep beneath the photosphere,
which can drive strong currents and cause various transient effects, as well as the mech-
anisms that heat the corona.

® Problem 3 — What is the altitude of the flare? We have answered this question.
However for clarity we repeat that we expect, on the basis of stability and energy require-
ments, low-lying flare arches of the order 5000 km.

® Problem 4 — What role does the magnetic field play in the flare process? The
magnetic field in the arch plays both a passive and active role. The toroidal component
of B maintains the integrity of the arch during flaring, and the poloidal component of
B provides the source of flare energy via j°Bp is annihilated by the reconnection process
in the arch due to the processes discussed.

® Problem 4a — How is the energy stored in this theory relative to its release posi-
tion? The energy is stored in the form of currents, which are probably generated beneath,
or in the deeper regions of, the photosphere. Hence they may represent a huge inductive
circuit, the arch being only a small portion of the total circuit. Although the bulk por-
tion of the energy is stored elzewhere, the flare energy is released in situ, in the lower
corona or transition zone.

® Problem 4b — [s the magnetic cnergy stored in the form of current sheets or
twisted fields? In this model these alternatives are equivalent.

® Problem 6 —- Are there any distinguishable time differences between flare onsets
in the soft x rays and in the H, lines, from the point of view of this model? Yes, the
soft x rays should rise first, because the H, lines are generated by manifestations of the
shock, which come after the arch heating. A possible exception may be the early forma-
tion of the flare kernels in H,.

® Problem 8 — Are there indeed two different types of flares: thermal and non-
thermal? This question was answered in detail earlier; but, to repeat, there exists a
heirarchy of flare types in this model.

® Problem 9 — What are the configurations giving rise to the two different types of
flares? The configurations are the same, if allowance is not made for filaments, etc.

® Problem 10 — What is the altitude of the acceleration region, and does accelera-
tion occur in expanding flare loops? In answer to the first question, the acceleration
region is within the arch, which generally will be low lying if it is to generate an impul-
sive flare. In answer to the second question, if a loop carries a current, acceleration can
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occur, of a shock striking a Yoop can lead to loss-cone instabilities and stochastic processes,
and thus to precipitation of energetic particles.

¢ Problem 11 — Is the acceleration process impulsive or continuous? Both, the im-
pulsive behavior occurs either from global kinks or when the short wavelength tearing
modes are growing and overlapping resonances occurs. As longer wavelength tearing occurs,
the system will saturate and evolve to a marginal stability state, thermalizing the field
continuously, although at a rate decreasing with time.

@ Problem 12 — Are the electrons accelerated during the themmal flare? Yes, regard-

less of whether the flare is thermal or nonthermal, in this model we expect some accelera-
tion to occur.

® Problem 14 — Most type III bursts do not occur during flares; how does the model
explain this? As noted in Section 7, electrons will not always escape from the arch and
we do not expect sheet kinks to form on the surface of every arch; hence not every flar-
ing arch should generate type III bursts. However we expect that most type III bursts
are related to phenomenon similar to the flare mechanism discussed here.

® Problem 16a — Are the high-energy particles in flares accelerated in a one-step or
a two-step acceleration process? We feel there is a two-step process. However we have
examined only the first step and not the second, and we do not intend to do so here.

@ Problem 16b — Since the second step is related to the shock wave, what are the
conditions that give rise to the shock? As we have discussed in some detail in Section 7,
either the shock will be generated when the gradients are steep enough and the B, is

large enough to cause the rate of energy release to appear explosive or global kinfs will
drive the shocks.

® Problem 17 — Is the visible Moreton wave a part of the same wave front that
produces type II bursts? In this model the initial shock wave generated by the pressure
pulse should expand in the form of a droplet, if the release is not impeded by magnetic-
field barriers. Hence there is no reason to expect the Moreton wave not to be part of
the same shock wave that forms the type II bursts. Hcwever, if the blast wave were to

excite other flares, such as other neighboring arches or filaments, these may generate their
own shacks and confuse the issue.

® Problem 19 — “Disparition brusques” are sometimes caused by shocks, but this is
not always the case; how does the model explain this? As argued earlier, filaments will
be subject to the same set of instabilities as the arches if they carry a current. Hence
they may be excited in the same way as arches, e.g., shocks and preflare heating.

Other questions raised by Svestka are related to the second acceleration phase of the

flare, which appears to be related to stochastic processes; hence they are outside the con-
text of the model presented.
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10. DISCUSSION AND CONCLUSIONS

In the development of this model we have used the observational fact that the
magnetic topology of a flare is an arch. In addition we have assumed that a toroidal cur-
rent exists in the arch. With this, we have examined the physical consequences of the
assumption and how it relates to the solar flare. We have found that the consequences
are many and that the model can explain many of the observations obtained from Skylab,
as well as previous observations. The assumption of the existence of such a current has
led, quite naturally, to a flare model that has explanations for many varied phenomena,
which include:

® The role of preflare heating,

® The small volume of energy release within the arch in comparison to the total arch
volume,

¢ The integrity generally maintained by the arch,

® Sympathetic flares,

® The difference between thermal and nonthermal flares,
® Kinking arches,

® A close relationship that may exist between flare instabilities and filament insta-
bilities if the filaments contain currents,

® The source of the flare shock wave and the requirements for its existence,

® Sprays,

® “Disparitions brusques,” and

® Flare ribbons and flare loops, and a connection between thom and type IV bursts.
We predict that:

©® The nonthermal flare, large or small energy release, will generally come from low
altitude arches;

® Impulsive bursts are a result of nonthermal heating and strong disruptions of the
plasma;

® The thermal flare will come from larger arches, unless the plasma density is very
large and invalidates Eq. (7.1}, even in the presence of large fields and field gradients;

® The rate of energy release decreases with increasing volume;

® Type 11l bursts either escape from arches by drift mechanisms and/or are caused
by sheet kinks;
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® Shock waves may excite multiple arches to flaring by a domino effect;

® FEnergy is stored mainly in the form of currents generated beneath the visible
photosphere, and the total stored energy is probably much greater than the actual energy
released during a flare;

® The faster the flare rise time the more nonthermal the flare; and

® High-altitude arches with weak field gradients will have large-diameter magnetic
islands, and low-altitude arches with strong ficld gradients will have small-diameter
magnetic islands, with both high and low arches having the appearance of being stranded
like a rope.

Some of these explanations are heuristic, but this is by necessity and not by choice.
For the theorist to develop a more quantitative model will require higher instrumental
resolution, which will not become available in the foreseeable future. However the
theorist must complement the observer regardless of the observer’s instrumental weak-
nesses. Hence the theorist must, within his ahility, help guide the observer in his observa-
tions, and for him to do so requires a model which is reasonably complete and which can
be tested. If tests prove positive, this model or a more successful model can then be
quantitatively improved, such as by a numerical modeling. However at present only
particular features of this model need to be studied in more detail, e.g., overlapping
resonances and the degree of enhanced reconnection, or the phenomenological release of
the equivalent of a flare energy into a model solar atmosphere, using realistic numerical
techniques. In this way progress can be made theoretically, and simultaneously other
problem areas can be defined.

It is hoped that this model. whether correct or incorrect, will act as a catalyst for
others and make the development of more realistic theoretical models of flares a reality.
In addition it is hoped that the observer wili give it a chance and compare theory with
observations carefully, being cautious not to confuse flare manifestations with the actual
event.
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Appendix A
LOCATION OF LEAST HYDROMAGNETIC STABILITY

Here, we examine the hydromagnetic stability of an ideal current-carrying arch, in
an attempt to determine the location where g(r, 0, ¢) is most likely to be < 1. Figure Al
illustrates the magnetic topology assumed. Here

R' = [Ry + AN]f(¢) (Al)

and

R"=[R0+A(r)|f(¢)-r«'os(0 +8), (A2)
where f(9) is a function describing the angular dependence of R” and R’ with altitude.
If the arch fields are symmetrical, f(¢) = 1 at ¢ = 0 or w and f(¢) is a maximum at 7/2,
implying f(¢) ic an even function. The guantity A(r) is a small quantity which takes into
account the distortion of magnetic surfaces due to curvature. We assume for simplicity
A(r) = A(r). A(r) is determined by the equilibrium conditions, and § is a quantity which
can be used to make the magnetic field lines straight in the coordinates 0 and ¢, i.e.,
dN/d¢ = constant. However this need not be done for what is to follow.

Using Egs. 1Al) and (A2), ‘ve have

r= (R, +AnN}floy-rcos (0 + b)t cos e, +I[R, + A(r)] f(¢) - r cos (0 + 8)} sin ve,

+rsin (0 +Me3. (A3)

Assuming A/r = ¢ and & = ¢, where ¢ = r/R << 1, we find the metric coefficients
g1y = 1-2cos 0/ (f(9),
gy = (1 + 205/00),
B33 = (Ry + 8)2f2(9) + [(Ry + B)($) - rcos 0]2,
819 = 8oy = rlA'f(¢) sin 0 +rdd/or],
Byo = Bya =rsin O(1 +38/I0) Ry + A)f'(#),
and

B3, = B3 = (Ry + D) (®)A'f(9) - cos 0 + r(38/dr) sin 0], (A4)
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Fig. A1 — Arch geometry. R(9) is the major radius and varies with ¢, and r is the minor radius.
The inverse aspect ration € = r/R().

where f'(¢) = df/dé and A" = dA/dr. Now

{ g22 dG/BO = Vg33 d¢/8¢v (A5)
hence
d0/d$ = /833 /B33 By /By (A6)

where d0/d¢ represents the rate of twist in 0 with angle (altitude) ¢. Since the toroidal
component B¢ decreases with altitude, we use as an example

By ~ BY(Ry/R"), (A7)
where BY is the strength of the field at the arch feet and & > 1. Now
(/R = {1/[(Ry + B)($)]}*[1 + (ar/R") cos 01; (A8)
hence
By~ Bg{R,,/I(RO + A)(¢)))*[1 + arcos O/R').
We take
By ~ BY[1+ A(r, $)cos 0], (A9)

where A(r, ¢) is determined by ¢°B = 0 and Bg is obtained by assuming the total current
I is approximately constant, although in reality I = I(r).
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Now
V8331850 = Alr, 0, 0); (A10)
hence
d0/d¢ = A(r, 0, ¢)By(Ry + A (&) BIRG(L + ar cos HIR). (A11)
Defining
q(r.0,¢)=rB,/RBg,
we have

d0/dé = A(r, 0, 0)r/Rq. (A12)

Evaluating d0/d¢ at ¢ = 0 or m and ¢ = #/2 by assuming f(¢ = 7/2) = y > 1, we obtain

=y**1, (A13)
¢=0,7

/
(df /do) / (d0 /d¢)

o=m2

i.e., the field lines are twisted by an amount 7"‘"1 greater at the apex than at the feet of
the arch. This implies g is y~! times smaller at arch apex than at the feet; hence the
arch is hydromagneticly least stable at the apex for symmetric fields. However, if

Bo(r. 0, ¢) is not so symmetric, d0/d¢ will have its maximum where Bo is a minimum.
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Appendix B
TRANSPORT MECHANISMS

Here we collect the many and varied transport mechanisms that may play a role prior
to and during the solar flare model proposed in Sections 6 through 10.

ANOMALOUS RESISTIVITY AND ANOMALOUS HEATING

Anomalous resistivity is a phenomenon that occurs when plasma collective effects
result in the spatial correlation of ions, so that when the electrons collide with this cor-
relation of ions, they see an effective charge-to-mass ratio much larger than e?/m;. This
results in an increase in the effective collision frequency over and above that which
occurs due to Coulomb collisions.

To model the enhanced resistivity generated by collective plasma effects, one typically
introduces an effective collision frequency v,z so that the anomalous resistivity is given by

NAN = Wepr/Vei ety (B1)

where v, is the Coulomb collision frequency and 7, is the classical resistivity. The
effective collision frequency may be obtained from weak turbulence theory, and is dis-
cussed in detail by Davidson (1972). Here, we collect in Tables Bl and B2 the threshold
conditions and effective collision frequencies for instabilities driven by currents parallel to
and perpendicular to the magnetic ficld, as well as the anomalous heating rates. These
instabitities will he briefly elucidated later.

Anomalous heating results when the collective effects transfer the energy from the
waves to the particles. The resulting increase in particle energy is not true thermal energy,
strictly speaking, but rather an energy of sloshing in the wave fields. This sloshing can
drive the particle distribution to Maxwellian-like distributions but never to a true Max-
wellian distribution. However, as far as flare modeling is concerned, this energy can be
treated as thermal, since the observable flare time scales are so much greater than the
characteristic times of plasma collective effects.

Before proceeding, some general remarks are in order. As noted by Lampe et al.
(1975), the principal effect of most collective plasma processes on macroscopic behavior
is that the plasma system is driven to marginal stability, by which we mean the svstem is
at the threshold from which it may be stahilized, excited, restabilized, and then reexcited
temporally and spatially. Thus the threshold conditions for turn-on and turn-off various
collective effects is important to us in addition to the anomalous transport resulting from
collective effects. Keeping this in mind, we will proceed by noting the various means by
which collective effects can be excited and then examine each in more detail.
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SOURCES OF PLASMA MICROINSTABILITIES

There are in general three main sources of free energy by which plasma microinsta-
bilities can be driven:

® Velocity-space anisotropy, which usually results from a skewing of the distribution
function by a current or by a high-energy beam within the plasma.

® Plasma expansion energy, which results directly from the fact that a confined
plasma, such as an arch, necessarily has a plasma distribution which is not in thermo-
dynamic equilibrium. Such a confined plasma necessarily has gradients in temperature
and/or density which are a source of free energy to drive microinstabilities. These insta-
bilities usually take the form of drift waves which try to eliminate the driving mechanism.

® Magnetic energy, which is stored in distortions of the magnetic field from its
vacuum state. Such distortions typically generate macroinstabilities which can drive
microinstabilities; e.g., a kink thrashing about will generate shocks, which can result in a
nonthermal distribution, which in turn can drive microinstabilities.

VELOCITY-SPACE ANISOTROPY
Here we collect the principal sources of velocity-space anisotropy.

A possible, although not probable, means of excitation of microinstabilities during
the preflare buildup, and during the actual flare, is by currents driven parallel to the
magnetic field. We note here only the Buneman instability (Buneman, 1959), the ion
sound instability (Krall and Trivelpiece, 1973), and the electrostatic ion cyclotron insta-
bility (Drummond and Rosenbluth, 1962). There are instabilities associated with currents
driven across magnetic fields; however tiiey have threshold values similar to the parallel-
driven-current instabilities. Thus, because the dominant current component is parallel to
8 in an arch, we will not presently consider them. The turn-on conditions and anomalous
transport coefficients are given in Table Bl.

A number of comments should be made before proceeding. First, it is ciear that
the requirements for onset of the Buneman instability are very restrictive. In particular
the gradient scale length for the poloidal component of B in the arch must be of the
order of a skin depth, i.e.,

U S By(dBy/dr)™! ~ (c/ep, M1/B,) V2. (B2)
Such a condition is unlikely in a quiescent solar arch, although it may be possible during

the evolution of the arch, e.g., during the emergence of an arch from beneath the photo-
sphere prior to a flare.
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The turn-on conditions for the ion sound mode are somewhat less restrictive, since
they require a gradient length

) c [1\1/2 1
G S - (5‘) - . (B3)
pi \Fp T, m; T,
1+|l= — exp ~l—
T, m, 2,

which is = 43 ¢ B Further ‘or constant electric field and classical resistivity T, « vglcgs
thus in principle the ion-sound instability can be triggered by a collisional heating insta-
bility, e.g., the superheating instability discussed in Section 4.

Notice that as T,/T; - 1 the ion-sound-mode turn-on conditions evolve into the
Buneman conditions. Further, notice that the conditions for the ion cyclotron mode
evolve into the ion-sound mode. Physically what occurs is that when the current is very
weak, or T, /T, = 1, we can expect the ion cyclotron mode. However, as the current
density increases, the growth rate of the ion cyclotron mode will exceed the ion cyclotron
frequency. When this occurs, the periodic Larmor motion of the ions is destroyed and
the ions become demagnetized (Qi/ve” < 1). At this stage the ion cyclotron waves are
destroyed by the turbulence, and the instability nonlinearly evolves into the ion sound
mode. Note that a large ratio of T,/T; is required to excite the ion sound mode. Also
note tha' to maintain a constant anomalous resistivity due to the ion sound instability
requires d(T, /T;)/dt > 1.

As we have noted, the above instabilities arise as a result of longitudinal currents
becoming electrostatically unstable. There is however a mechanism which can generate a
source of enhanced plasma turbulence even when the longitudinal current is electrostati-
cally stable. This mechanism was developed by Papadopoulos and Coffey (1974a, 1974b),
and has been applied to Birkeland (field-aligned) currents that exist in the ionosphere and
magnetosphere. The basic assumption made for their mechanism is that a weak beam of
high-energy electrons exists in addition to the electrostatically stable Birkeland current.
This fast beam interacts with the bulk current, which is electrostatically stable itself, via
the beam-plasma instability in region 1 of Fig. B1. The turbulent field energy generated
by this interaction cascades, by the nonlinear-oscillating-two-stream instability, into plasma
waves in regions 2 and 3, and into ion-density fluctuations with phase velocities approach-
ing zero. The cascading time must be such that it occurs on a time scale faster than the
quasi-linear beam stabilization time. Thus the turbulent field energy is no longer resonant
with the beam, which then cannot relax into a plateau. Hence the beam maintains its
integrity. It is the excited electrostatic ion-density fluctuations created in the cascading
process that yields the bulk anomalous resistivity. Papadopoulos and Coffey (1974b) give
an effective collision frequency

T 1/2 W
Veft = Wpe (‘5) < k)\o > (;'—ﬁ') , (B5)
e

where < kAy > represents the predominant wave number participating in the oscillating
two stream instability, W, (= n,m,uv, Av,) is the energy density of the electron plasma
oscillations, nkT, is the thermal energy density of the ambient auroral zone, n, is the
beam density, v, is the beam velocity, and Av, is the thermal spread of the beam.
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Fig. Bl — Velocity and field energy distributions:
(a) Initial velocity distribution functions of the beam and
the plasma electrons; (b) wave spectrum in phase velocity
space, region 1 being the region of the growing waves due
to the beam plasma interaction, and regions 2 and 3 being
the regions of spectral energy transfer due to the oscillat-
ing two-stream instability ; and (¢) final marginal stability
state of the beam and the plasma electron distribution
functions

Papadopoulos (1975) has also considered the question of how this instability may
lead to a stabilized source of anomalous resistivity. The basic arguments are simple. One
first assumes a source of high-energy electrons exists which will give rise to the anomalous
resistivity as discussed above. Since this new resistivity is a bulk resistivity, the joule
heating will increase, altering the thermal distribution of the electrons so that more
electrons can run away. These new runaway electrons then feed the beam that generates
the anomalous resistivity. This behavior then leads to a self-sustaining nonlinear feedback
mechanism for anomalous resistivity in the presence of an electrostatically stable current.
As argued in Section 8, combination of the superheating instability and current convec-
tive instability could act as an initial injection mechanism for this source of anomalous
resistivity.

PLASMA EXPANSION ENERGY

As defined earlier, plasma expansion energy is a source of plasma energy that resides
primarily in temperature or density gradients or, in general, pressure gradients. Since the
gradients that exist in the solar atmosphere are small, it is difficult to believe that plasma
expansion energy can play a role in the triggering of a flare, although it probably plays a
role during the actual flare. These instabilities are of a class usually called drift insta-
bilities (Krall and Trivelpiece, 1973). This is because a gradient of density, temperature,
or magnetic field perpendicular to B results in particle drifts. In general a detailed knowl-
edge of the particle distribution is necessary to properly describe the instability. How-
ever there are reasonable approximations one may make, since the drift velocity v4 of the
particles is typically of the order

Vg = UTCPC/L, (B6)
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where p, is the electron gyroradius and L is the gradient scale size. Adopting L = 1 km,
T, =~ 106 K, and B = 500 gauss as characteristic values in one solar atmosphere yields
vz = 1 meter/s. [f the wave vector of the growing wave satisfies k-8 = 0. the wave can
extract energy from only the drifting particles and the instability may be classified as a
flute instability. If ky # 0 but has a small component parallel to B, the wave phase
velocity parallel to B can be comparable to the thermal velocity. Hence energy « an be
ex:racted from the parallel thermal velocity component of resonant particles. T.is typs-
cally results in magnetosonic or Alfven waves.

An examination of the dispersion relation (Krall and Trivelpiece, 1973) shows that
since v; << Z only ik | << |k} is allowed. This yields a frequency w’ = k, V, when
kip; =1 and w* = 0.2v7 /L when 1 <k p,. The maximum growth rate occurring for
kip; = 3is W= O.2vT'_/fl. For the previous assumed values w* = 14 Hz.

As the particles drift across the field, they tend to flatten the gradient. This takes a
time of the order t; ~ L2/vy p,. Using the above values, we have t; ~ 103 s. For
steeper gradients, this time is considerably shorter, since t; varies as L.

Some additional comments are in order concerning the applicability of these insta-
bilities in the solar atmosphere. For example, if a density gradient exists, a drift-wave
instability can occur only near §; and if vy /L = ;. This condition is highly restrictive
and probably impossible to satisfy in the solar atmosphere, so it is safe to neglect density-
driven drift modes. An alternate situation is when the density and the temperature have
a gradient. Instability will occur if

{1-(n/2TdT/dn](n/T)dT/dn <0. (B7)

Since solar arches observationally have a cold core and a hot extremity, and at the same
time are approximately force free, it is easy to show for this case that

dT/dn <0 (B8)
and instability can occur.

Returning to the problem at hand, we recognize that although the drift modes appear
to be weak, our knowledge of preflare conditions in arches is nonexistent. Hence it is
quite possible that plasma expansion energy may play a role in the flare triggering, e.g.,
the alteration of the current-density profile during the emergence of an arch. Because of
this possibility we note various possible means by which plasma expansion energy can
modify the current-density profile. We will follow, in part, McBride et al. (1975). There
exist two regimes to be considered: the high-frequency regime (w >> £2;), and the low-
frequency regime (w << §2;). We have already considered (Table B1) three longitudinal
current-driven instabilities which can also alter the current profile. These belong in the
high-frequency regime. In Table B2 we collect, following McBride et al. (1975), the
other possibilities. Before proeeeding, it must be emphasized that the realization of the
instabilities to be discussed has a low probability, except during the formation of the arch
or if there exists a transient EMF along the arch by some as-yet unknown mechanism. In
addition, if these instabilities occur, they will cause the current-density profiles to become
more stable to MHD and resistive macroscopic modes, since they tend to flatten the
current-density profile rather than steepen it.
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Table B2 — Current Penetration Instabilities

Instability Threshold Conditions Comments
Current shear 4 -1
(Horton, 1972) _(1 9
8¢y (JT dr) w > kjjvg,

1 e c 1 :
1 ©re VTe (14 w2,/02,)1/2

(1 + w2, 9272

Condition must be
satisfied if A > Q;
as theory assumed.

Current shear
(Lui, 1971)

w < kjfvp,

Temperature gradient
stabilizes the mode.

Electron temperature
gradient opposite to
density gradients

Shear must be weak
enough not to damp
modes.
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Two possible instabilities driven by radial current gradients are those considered by
Horton (1972) and Liu (1971). Horton (1972) considers a current-gradient instability
which exists in the fluid limit (w > k“uT ) and will lead to current penetration according
to a diffusion equation. However McBride et al. (1975) show that one should expect the
ion sound instability to be excited before the current-shear mode developed by Horton
(1972), except in cases where the current gradients are very steep.

The current-shear mode considered by Liu (1971) suffers a similar fate, because it
can be satisfied only if the gradient in toroidal current density is of the order L < c/Wpe-
In addition, when the current density and temperature gradients are comparable, Liu’s
mode is stabilized.

An instability that exists at frequencies below the ion gyro frequency, and which
may be important in low-lying steady-state arches, is the electron-temperature-gradient
drift-wave instability (Kadomstev, 1965). This instability exists when the temperature
gradient is the reverse of the density gradient, as would occur if the arch were force free
or if there is a current skin phase in the evolution of the arch. As shown by Liu et al.
(1972), this mode requires a magnetic shear length L =~ (c2ﬂe)/(vdw,2,e). In addition Liu
et al. (1972) have shown this instability leads to anomalous transport which tends to
flatten the temperature gradient by convecting heat inward while convecting mass out-
ward.

MAGNETIC ENERGY

Anomalous effects driven by magnetically stored energy, being released in the form
of MHD or resistive MHD instabilities, are very likely during the flare or in the preflare
period. This energy will initially be released in the form of plasma flow parallel and
perpendicular to the magnetic field, driven by electric fields generated by MHD or resis-
tive MHD instabilities, i.e.,

and
E, =i, -vXBc. (B10)

Equation (B9) can in principal generate electron streams of sufficient energy to excite
instabilities driven parallel to B, e.g., the Buneman instability. Alternately E; given by
Eq. (B10) will result in plasma flow across magnetic fields, so that it is possible to excite
various crossfield instabilities such as the beam cyclotron instability. Such instabilities can
also be excited by shock waves moving across field lines. Most of these crossfield insta-
bilities lead to modified transport coefficients to such an extent that they should play an
important role during the flare itself. In particular one should expect strong energy and
momentum coupling between the flare plasma and the ambient plasma in which the flare
is situated. For these reasons we will briefly discuss the various instabilities and then list
their thresholds and transport coefficients.

In Table B3 we collect the various instabilities (after Lampe et al. 1975), their turn-
on conditions, and the transport coefficients. The beam cyclotron instability is driven by
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the relative drift of electrons and ions across a constant magnetic field and is due to the
coupling of electron cyclotron modes with ion sound modes. This instability results in
strong electron heating, and when the turbulence is strong enough, the electrons become
unmagnetized (£2, /v,y << 1). When this occurs, the instability evolves into the ion
sound instability. \

The ion-ion two-stream instabilities fall into two classes: magnetized and unmag-
netized. The unmagnetized ion-ion instability (UII) results when the relative drift velocity
between counterstreaming ions becomes greater than the sound velocity. The magnetized
ion-ion instability (MII) is similar to the beam cyclotron instability and occurs when the
drift velocity between counterstreaming ions across a magnetic field exceeds the sound
velocity. The MII evolves into the UIl when the turbulence is sufficiently great that the
ions become unmagnetized. However it must be recognized from the conditions in Table
B3 that for certain parameter ranges both instabilities can exist, although the Ull is
always the faster growing and dominant instability. These ion-ion instabilities are of
particular importance because they provide strong momentum coupling. However they
do not cause electron heating but only ion heating.

‘The modified-two-stream instability (MTS) (Krall and Liewer, 1971) is caused by
the relative drift of ions and electrons across a magnetic field. It is particularly important
because of its role in heating electrons and ions. In addition it can be operative even in
parameter regimes where no other electrostatic instabilities are present. Moreover, as
discussed by Krall and Liewer (1971), the fluidlike character of the instability and its
insensitivity to the electron-ion temperature make it attractive for explaining a number
of experiments. Hence it may be important during solar flares.
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Appendix C
RESISTIVE KINK LINEAR GROWTH RATES

Here we examine the linear growth rates of the tearing mode in cylindrical geometry.
In general this requires numerical solutions to the pertinent equations, which we examine
below. However one can obtain an idea of how the growth rates behave by using Eq.

(4.73), i.e.,
2/5
n 05 [d(BQ,/r)dr}

v = 0.5m2/5A'4/5 (C1)

i | mp)t
and assuming instability, i.e., A' > 0.

First we note that vy depends on the gradients of Bw i.e., the magnitude and dis-
tribution of the longitudinal current. Thus vy is very model dependent. This should be
contrasted with the growth rates typically used for sheet flare models, where vy is simply
taken as p ~ (S/a)2/5. In reality the growth rate strongly depends on the gradients of
the driving fields, and even differing sheet models will have differing growth rates for the
same set of mode numbers and equilibrium magnitudes. In addition

A, = [dB,-l ‘rs + 8)/(1" - dBrl (rs - 8)/dr]/8r1 (rs)a (Cz)

strongly depends on the gradients of the perturbed radial component of B, where

€ << 6 << a. It is therefore beneficial to emphasize the strong dependence of y on the
equilibrium configurations that drive the tearing mode, since this strong model dependence
will also help explain the variety of flare types typically observed.

As noted earlier, the determination of growth rates generally requires numerical
solutions. This can be done by numerically solving the following set of linearized equa-
tions (Killeen, 1968):

1 c2
-&-=VX(V1XBO)’E V X (npV X By +1, ¥ X By), (€3
oM™ 1 e ixa X B,)XB > v X (VX
5 T an (VX By) L H(VXB)) 0]-Vp1+p0v3 VIVv) -V X(V XV,
(C4)
podT, 2 c?
S PV VT - (v - pgTo(V-v) + k V2T + 20y - 1) = no(V X By)*(V X B)
2
+(r-1) = n(V X Bo)? + (v - 1)(Sp),, (C8)
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op
TR +V-(pyv,) =0, (C6)
Py =P Ty * 0y Ty, (€7)
and
VB, =0, (C8)

where (S.), corresponds to the various energy sources and sinks not explicitly included,
v = CP/CU, and v is the kinematic viscosity. Here B = ¢B®(r) + sz(r) and all perturbed
quantities vary as exp i(m¢ + kz). To solve the resulting equations, one first introduces
the dimensionless quantities introduced in Section 4 which characterize the relevant time
scales of the system of equations: 7g and 7. One then proceeds by using implicit dif-
ferencing schemes and then solving the resulting equations via the tridiagonal algorithm
(Killeen, 1969). This was accomplished by Killeen (1963) and Dibiase (1974) using two
differing numerical codes: Ripple4 and Restab respectively. The results presented here
were obtained using Restab, which has the greater versatility in that it can handle
equilibrium temperature and density gradients perpendicular to B as well as handling
altemnate energy sources and sinks and permitting compressible perturbations.

The results given are only meant to illustrace the difference between the growth rates
that one would obtain for differing equilibrium models. Hence, the only case considered
is the force-free model discussed in Section 4, as contrasted with the sheet model of
FKR (1963). However the results are not meant to be indicative of an exhaustive
parametric study of the model, since it would be both economically and physically
unreasonable to generate detailed parametric studies of equili"rium models at this stage
without a realistic equilibrium model of the magnetic field in a solar arch. In addition
the large magnetic Reynolds numbers characteristic of the solar atmosphere require
inordinate amounts of computer time to determine growth rates. Hence the results
presented will be limited to Reynolds numbers pertinent to the discussions in the main
text, and for modes with m = 1 and o = 0.2.

Table C1 illustrates the results. Notice that generally the growth rates for the BFM
are greater than the sheet model, sometimes by as much as ten or more. One should
therefore expect that nonforce-free magnetic configurations will have even greater linear
growth rates, since there exists additional free energy in such equilibrium configurations
to drive the modes.

A consequence of these results s that the magnitudes of the poloidal component of
B may reduced by a factor of 2 or 3 as compared to that adopted in Section 6 and still
satisfy the requirement that ~ 10°® ergs/s be released to explain the small flare. This
also reduces the requirements on the current densities and/or the gradients found in
Sections 6 and 8.
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Table "1 Comparison of Results of the Bessel-Function Model of Section 4
With the Sheet Model of FKR (1963)
e
7(s'1 )
n T B, a g 7, -
(em-3) | (K) | (8) | (cm) - (s) Sheet BFM
Model (m =1 mode)
Lo
1012 | 10% | 500 | 102 | 2.6X10% | 0.024 4.6 X 103 1.7 ¥ 10*
10'2 1 10° | 500 | 10% | 26X 10° | 239 1.2 X 102 9.6 x 10?
1012 10° | 500 | 10% | 2.6 X 10° 24X 102 | 2.9 5.4 X 101
1012 10% | 250 | 10% | 1.3x 104 0.024 3.5%X10% 1.0 x 104
10! 10° | 250 | 10% | 1.3 x10° 2.39 8.8 X 10} 5.7 X 102
1012 10° | 250 | 10% | 1.3 x 108 2.4X10% | 2.2 3.2 X 10!
101! 10° 500 | 102 | 7.4 X101 0.022 7.7 X 103 4.1 x 104
10 1 10% | 500 | 103 | 76X 10° | 219 1.9 X 102 24 X103
10! 10° | 500 | 104 | 7.5 X 108 2.2X10%2 | 49 1.3 X 102
10" "1 10° ! 250 | 102 | 3.8 X 10¢ 0.022 5.8 X 103 2.5 x 101
101} 10° | 250 | 103 | 3.8%X 107 219 | 1.5x10? 1.4 X 103
1011 10° | 250 | 10% | 3.8 X 108 22X 10% | 3.7 7.8 X 10!
10121108 | 500 | 102 | 6.5X10% | 0.059 6.8 X 103 7.7 X 10*
10'2 1105 | 500 | 10° | 6.4 X105 | 595 1.7 X 10! 4.3 X 102
1012 10 | 500 | 104 | 6.5%X 107 59X 10% | 0.4 2.5 X 10!
10" 1 10% | 250 | 102 | 32X 10° | 0.059 5.1 X 103 4.6 X 104
10‘(2 108 | 250 | 103 | 3.2X10% | 59.5 7.6 X 102 2.5 X 102
1012 108 | 250 | 10* | 3.3 X107 59X 10% | 0.3 1.5 x 10!
101! 10 | 500 | 102 | 2.0 X 10° 0.5 1.2 X103 1.9 X 104
10! 108 | 500 | 103 | 2.0Xx 107 56 X 10! | 29 x 10! 1.1 X 103
to!! 10 | 500 | 10* | 1.08 55X 10% | 0.7 6.1 X 10!
101! 108 | 250 | 102 | 108 0.55 8.7 X 102 1.2 x 104
101! 108 | 250 | 103 | 107 55.6 | 2.2x10! 6.4 X 102
101 LIOG 250 | 10* | 108 55x10% | 55X 107! 3.6 X 10!
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